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Abstract 

Backgrounds.  Histamine participates in the immune regulation of several gastrointestinal 

diseases. However, the effect of histamine on intestinal intraepithelial lymphocytes (IELs), 

the front line of intestinal mucosal immune system, is not well-understood. We examined 

whether histamine has a direct effect on cytokine production by IELs and the involvement of 

histamine receptor subtypes. 

Methods.  Murine IELs were activated by PMA plus ionomycin with/without histamine. 

Secreted cytokines were measured and compared with those of splenocytes. Intracellular 

cytokines were detected by flow cytometory. Expression of histamine receptor subtypes in 

IELs was examined by RT-PCR.  

Results.  Histamine H1 receptor (H1R), H2R, and H4R, but not H3R mRNA were expressed 

on IELs. Histamine significantly decreased Th1-cytokine (IFN-γ, TNF-α, and IL-2) and also 

IL-4 production in IELs as well as splenocytes. The selective H2R antagonist famotidine, but 

not the H1R antagonist pyrilamine nor the H3R/H4R antagonist thioperamide, competes with 

the inhibitory effect of histamine on these cytokine production in IELs. These suppressive 

effects of histamine were mimicked by a selective H2R/H4R agonist dimaprit. Further, these 

suppressive effects of histamine for Th1-cytokine and IL-4 did not accompany with the 

enhancement of IL-10 production nor IL-10 mRNA level in IELs. Intracellular cytokine 

analysis revealed that the number of IFN-γ-producing αβ T cells was significantly reduced 

by histamine in IELs. 

Conclusions.  Histamine has a direct suppressive effect on IEL-derived cytokines via H2R, 

which would have a crucial role in the suppression of local immunoregulation in the 

intestinal epithelium. 

Key words: histamine, IEL, histamine H2 receptor, IFN-γ, TCRαβ
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Abbreviations: IEL, intraepithelial lymphocyte; H2R, histamine H2 receptor; IBD, 

inflammatory bowel disease; IBS,irritable bowel syndrome; GPCRs, G protein-coupled 

receptors; GALT, gastrointestinal associated lymphoid tissue; HDC, histidine 

L-decarboxylase; CBA, cytometric.bead array; DC, dendritic cell, reverse 

transcriptase-polymerase chain reaction, RT-PCR, lamina propria lymphocyte, LPL.
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Introduction 

 Histamine, one of the most intensively studied biological amines, is involved in the 

immune regulation of the inflammatory response of several gastrointestinal disorders such as 

food allergy 1, inflammatory bowel disease (IBD) 2, 3 and irritable bowel syndrome (IBS)4, 5. 

Histamine exerts its effects through four receptors (H1R, H2R, H3R and H4R) which are 

members of the G protein-coupled receptor (GPCR) family 6, 7. Recent studies revealed that 

histamine regulates innate and acquired immune responses through H1R as well as H2R 8 and 

shifts the systemic Th1/Th2 balance from Th1 to Th2 9, 10.  

Accumulating evidence suggests that histamine also affects gastrointestinal 

associated lymphoid tissue (GALT) and has an important role in the intestinal mucosal 

immune system. In the digestive tract, mast cells, basophils, and gastric 

enterochromaffin-like cells are the major source of “granule-stored” histamine, and recently 

the cells such as lymphocytes 11, macrophages 12 and colorectal cancer cells 13, which have 

high L-histidine decarboxylase (HDC) activity, are also thought to be a source of “inducible” 

histamine. In patients with IBD, urinary excretion of the histamine metabolite 

N-methylhistamine is enhanced and is related to clinical and endoscopic disease activity 14. 

H1R and H2R mRNA levels in the small intestine are significantly elevated in patients with 

food allergies and IBS 5. Based on these observation and others, there is a speculation that 

not only H1R, but also H2R may be related for the dysregulation of the mucosal immunity 8, 15, 

16. Furthermore, in colorectal cancer, histamine modulates the Th1/Th2 balance and 

attenuates anti-tumor cytokine expression 17. Several clinical trials have been carried out with 

H2R antagonists in colorectal cancer patients; both increased survival and immunological 

recognition of the tumor is reported 18. 

 Intraepithelial lymphocytes (IELs) bear the front line of intestinal mucosal immunity 

and are phenotypically and functionally distinct from T cells in peripheral blood or the spleen 
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19-21. Suggested functions for IELs are mediation of inflammatory reaction, surveillance of 

the intestinal epithelium and induction or maintenance of oral tolerance 22, 23. It is plausible 

for IELs to play a crucial role in the development and progression of the intestinal diseases. 

Studies indicate that IELs secret several cytokines as immunoregulator cells in response to 

foreign antigens in vivo or stimulants in vitro 19, 24-29. Secreted cytokines are varied by the 

condition of the stimulation. In murine IELs, IFN-γ and IL-5 are produced spontaneously and 

enhanced by stimulation 24. Other studies shown that IFN-γ, TNF-α, TGF-β1, IL-2, IL-3 and 

IL-6 are produced in CD8+ IELs by anti TCR mAb stimulation 25. Yet, there are few reports 

studying how IELs are regulated, and no study has examined the regulatory effects of 

histamine on IEL function. 

 The aim of current study was to determine whether histamine contributes to regulate 

intestinal mucosal immune responses mediated by IELs. We examined whether histamine 

has direct effects on conventional Th1- or Th2-cytokine production by IELs in vitro and 

whether different effects are mediated by the different histamine receptor subtypes. Further, 

we determined which IELs subsets were involved in IFN-γ production by detecting 

intracellular cytokine production.
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Materials and methods 

Mice  

Male C3H/HeN mice were obtained from Japan SLC (Hamamatsu, Japan) and were 

maintained under specific pathogen-free conditions. All mice in this study were used at 7-10 

weeks of age and were allowed free access to food and water ad libitum. All experiments 

were performed according to the Guidelines and Regulations for Laboratory Animal Care of 

Hamamatsu University School of Medicine. 

Materials  

Phorbol myristate acetate (PMA), ionomycin, lipopolysaccharide (LPS) from 

Escherichia coli (serotype 026:B6), histamine dihydrochloride, pyrilamine maleate salt, 

famotidine, thioperamide maleate salt, and RPMI-1640 were purchased from Sigma (St. 

Louis, MO, USA). Dimaprit was purchased from Wako (Osaka, Japan). Fetal bovine serum 

(FBS) and Hank’s Balanced Salt Solution (HBSS) were purchased from Gibco (Grand Island, 

NY, USA). Percoll was purchased from Amersham /GE Healthcare Biosciences (Little 

Chalfont, UK). PE-labeled anti-mouse TCRβ chain, FITC-labeled anti-mouse TCRγδ, 

FITC-labeled anti-mouse CD3, PE-labeled anti-mouse CD4, PerCP-labeled anti-mouse CD4, 

PE-labeled anti-mouse CD8a, PE-labeled CD11c, PE-labeled anti-mouse CD14, 

FITC-labeled anti-mouse IFN-γ, PE-labeled anti-mouse IL-4 were purchased from BD 

PharMingen (San Diego, CA, USA).  

 PMA and ionomycin were dissolved in dimethyl sulfoxide (DMSO), and diluted in 

RPMI-1640. Residual DMSO was <0.5% in culture medium. The other reagents such as 

histamine ligands and LPS were diluted in Milli Q water, and the stock solutions were stored 

at -20℃ until use. 

Isolation of IELs and preparation of splenocytes 

 IELs were isolated from the small intestine according to a previously reported 
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method 30 with a minor modification 31. Briefly, the small intestine was cut into pieces and 

stirred at 37°C for 45min in HBSS containing 5% FBS. Supernatants containing IELs were 

filtered through a glass wool column before centrifugation through a 44/70% percoll gradient. 

IELs at the interface were collected, washed and then resuspended in culture medium 

(RPMI-1640 supplemented with 10% FBS).  

The spleen was removed from sacrificed mice and cut into several pieces. The cell 

suspension was then centrifuged and the cell pellet was resuspended in Dulbecco’s phosphate 

buffered saline. The red blood cells were lysed in lysing buffer (NH4Cl 150mM, KHCO3 

1mM, EDTA 0.01mM). Splenocytes were washed two times and resuspended in the culture 

medium (RPMI-1640 supplemented with 10% FBS). 

Analysis of H1R, H2R, H3R, and H4R mRNA expression on IELs 

 The mRNA expression of histamine receptor subtypes in IELs was detected by 

conventional reverse transcriptase-polymerase chain reaction (RT-PCR). Isolation of total 

RNA was performed using RNeasy mini kit (QIAGEN, Hilden, Germany) with DNase 

treatment (Ambion, Austin, TX, USA). After DNase treatment, reverse transcription was 

performed using random hexamer primers (TaKaRa BIO, Otsu, Japan) and M-MLV (TaKaRa 

BIO). The oligonucleotide primers used for reaction were as follows; for β-actin, 

5´-tgttaccaactgggacgaca-3´ (forward) and 5´-ccatcacaatgcctgtggta-3´(reverse), fragment size 

236 bp; for H1R, 5´-gaccttggtggatcgacagt-3´ (forward) and 5´-tgtctggaatgtgagcgaag-3´ 

(reverse), fragment size 153 bp; for H2R, 5´-ttccttacttcactgccttcg-3´ (forward) and 

5´-ttgtgagagttgtggcttgc-3´(reverse), fragment size 199 bp; for H3R, 

5´-agcgcatgaagatggtatcc-3´ (forward) and 5´-agccagaaggacgtctcgta-3´ (reverse), fragment 

size 196 bp; and for H4R, 5´-gaatcagctgcatctcgtca-3´ (forward) and 

5´-gtgacctggctagcttcctg-3´ (reverse), fragment size 187 bp. The PCR condition was 94°C for 

30 s, 58°C for 30 s, and 72°C for 1 min for 37 cycles. PCR products were loaded on 3% 
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agarose gel to check the specificity of the reaction. 

Analysis of IFN-γ and IL-10 mRNA expression on IELs 

 Total RNA extraction and reverse transcription was performed as described above. 

Real-time PCR was performed using LightCycler (Roche Applied Science, Indianapolis, IN, 

USA). The oligonucleotide primers used for reaction were as follows; for IFN-γ, 

5´-ctcttcctcatggctgtttc-3´ (forward) and 5´-ttgctgatggcctgattgtc-3´ (reverse), fragment size 

233 bp; for IL-10, 5´-gccaagccttatcggaaatg-3´ (forward) and 5´-atggccttgtagacaccttg-3´ 

(reverse), fragment size 235 bp. PCR was performed using SYBR Green PCR Master Mix 

(Applied Biosystems, Foster City, CA, USA) according to manufacture’s instructions. The 

PCR condition was 95°C for 15 min for 1 cycle, 94°C for 15 s, 60°C for 30 s, and 72°C for 

30 s for 40 cycles. The data are normalized to β-actin from same sample. 

Analysis of lymphocyte subtype by flow cytometry 

 The surface phenotype of IELs and splenocytes were analyzed using 

fluorescence-labeled anti-mouse mAbs. Cells were stained with mAbs for 15 min on ice and 

washed in PBS. Cells were examined using an EPICS XLII System (Beckman Coulter, 

Fullerton, CA, USA). 

Analysis of secreted cytokines by cytometric bead array 

 Cells were adjusted to a concentration of 1×106 cells/mL in culture media, pretreated 

with or without histamine ligands and incubated for the indicated time at 37°C in a 

humidified atmosphere of 5% CO2 in air with or without PMA (40 ng/mL) plus ionomycin (4 

μg/mL), or LPS (1 μg/mL). The supernatants were collected at 48 h after incubation in IELs 

and at 24 h after incubation in splenocytes, respectively and IFN-γ, TNF-α, IL-2, IL-4, IL-5 

and IL-10 were detected using the mouse cytometric bead array (CBA) kit (BD PharMingen). 

The CBA kit employs a series of beads with discrete fluorescence intensities that enable us to 

simultaneously detect multiple soluble cytokines. Each bead provides a capture surface for a 
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cytokine and is analogous to a coated well in an enzyme-linked immunosorbent assay. 

Analysis of intracellular cytokines 

 Cells were adjusted to a concentration of 1×106 cells/mL in culture media, pretreated 

with or without histamine (10-4 M) and incubated with PMA (40 ng/mL) plus ionomycin (4 

μg/mL) and brefeldin A (20 μg/mL) for 4 h at 37°C in a humidified atmosphere of 5% CO2 

in air. Intracellular IL-4 and IFN-γ were detected in fixed and permeabilized cells using 

mAbs conjugated to PE or FITC. Data was acquired by flow cytometry using an EPICS XLII 

System. 

Administration of histamine agonists and antagonists 

 To assess the effects of histamine via histamine receptor subtypes, we used the H1R 

antagonist pyrilamine (10-5 M), the H2R antagonist famotidine (10-5 M), the H3R/ H4R 

antagonist thioperamide (10-5 M) in the presence of histamine (10-4 M). The selective H2R/ 

H4R agonist dimaprit (10-4 M) was used for the further confirmation of H2R selectivity with 

or without famotidine (10-5 M). These doses were chosen based on pharmacological 

characteristics according to previous studies in non-immune cells 32, and also immune cells: 

i.e., splenocytes 8, 10, and we have not observed any cell toxicity by these agents based on a 

trypan blue assay. 

Statistical analysis 

 The Student’s t-test was used for comparisons of secreted cytokine production 

between the control and stimulation groups with PMA plus ionomycin or LPS. To examine 

the effects of histamine, the data are shown as a percentage of each level in the presence of 

PMA plus ionomycin without any histamine receptor ligand and represent the means ± 

standard error of the mean. Comparison between IFN-γ producing TCRαβ+ and TCRγδ+ 

population was statistically analyzed with the Student’s t-test. A level of P < 0.05 was 

considered to be statistically significant. 
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Results 

Purity and phenotypic characterization of IELs 

 Cell viability, determined by trypan blue exclusion, of purified IELs and splenocytes 

were > 93% and >95%, respectively. Cell purity of the IELs compartment assessed by flow 

cytometry was 80.2 ± 4.7% (Figure 1), similar to the previous report 33. To examine the 

phenotypic characteristics of purified IELs, we stained IELs with mAbs for the cell surface 

markers. Most IELs were CD3+ T cells (88.2±3.2%, n=3) and predominantly expressed 

CD8 (85.6±0.9%) compared with CD4 (9.1±0.7%). IELs contained CD4+CD8+ double 

positive cells (4.0±1.0%) and CD11c+ cells (7.9±0.1%). IELs had comparable numbers of 

TCRγδ+ cells (38.6±2.4%) and TCRαβ+ cells (48.7±1.6%). In splenocytes, there were low 

number of CD3+ T cells (35.3±2.7%), and few number of CD4+CD8+ (0.3±0.02%) double 

positive T cells compared with IELs. Purity of whole splenocytes was 90.4 ± 1.0% (n=3). 

Splenocytes were predominantly expressed TCRαβ+ cells (30.6±0.6%) compared with 

TCRγδ+ cells (1.9±0.6%).  

 

Profile of cytokine production derived from IELs compared with splenocytes  

 We compared cytokine production by IELs and splenocytes activated with or 

without either PMA plus ionomycin or LPS. As shown in Table 1, there was low cytokine 

production in the absence of stimulants (control group) both in IELs and splenocytes. 

Different profiles of cytokine production were observed between IELs and splenocytes in the 

presence of stimulants. Although IELs produced significantly higher levels of Th1-cytokines 

(IFN-γ, TNF-α, IL-2) and IL-4 when activated by PMA plus ionomycin, LPS did not yield 

any inducible cytokines. On the other hand, splenocytes did produce IFN-γ and TNF-α by the 

activation by LPS as well as PMA plus ionomycin while the production level was differs 

between the two conditions. Therefore, we subsequently used PMA plus ionomycin for the 
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following experiments. 

 

Detection of H1R, H2R, H3R, and H4R mRNA expression on IELs 

 To elucidate the expression of known subtypes of histamine receptor in IELs, we 

examined RT-PCR to detect the H1R, H2R, H3R, and H4R mRNA. As shown in Figure 2, H1R, 

H2R, and H4R mRNA were expressed on IELs, while H2R mRNA expression seems to be 

more substantial compared to the expression of H1R and H4R mRNA. We did not observe 

any signal for H3R mRNA. 

 

Histamine decreases IFN-γ, TNF-α, IL-2 and IL-4 derived from activated IELs as well as 

splenocytes 

 To determine whether histamine has regulatory effects on cytokine production in 

IELs, we examined the cytokines in the presence or absence of histamine compared with in 

splenocytes. Both in IELs and splenocytes, without PMA plus ionomycin stimulation, 

histamine had no apparent stimulatory effects on production of these cytokines (data not 

shown). When the IELs were activated by PMA plus ionomycin, histamine significantly 

decreased IFN-γ, TNF-α, IL-2 and IL-4. The inhibitory effect of IFN-γ, TNF-α, IL-2 and 

IL-4 was 41, 48, 39 and 32% respectively at 10-4 M histamine. These effects were also 

observed in splenocytes; the inhibitory effect of IFN-γ, TNF-α, IL-2 and IL-4 was 30, 46, 49 

and 16% respectively (Fig. 3). Dose-dependent effects by histamine, between 10-7 M and 10-4 

M, were observed in Th1-cytokine (IFN-γ, TNF-α, and IL-2) production, but not in IL-4 in 

IELs which was secreted at a relatively low level. 

 

Suppressive effects of histamine on Th1-cytokine and IL-4 secretion in IELs were 

mediated predominantly via H2R  



Takagaki K; H2R-mediated cytokine responses in IELs 

 12

 To determine the functional selectivity of histamine receptor subtypes on the 

histamine-mediated regulation of cytokine production, we examined the effects of selective 

histamine receptor antagonists on histamine treatment in IELs compared with splenocytes. 

We used following selective antagonists for our experiments; pyrilamine for H1R, famotidine 

for H2R, and thioperamide for H3R/H4R 32. Selective histamine receptor antagonists did not 

influence cytokine production by themselves while the cells were activated by PMA plus 

ionomycin (data not shown). Then, cells were pretreated with pyrilamine (10-5 M), 

famotidine (10-5 M) or thioperamide (10-5 M) for 5 min and thereafter treated with histamine 

(10-4 M) according to previous reports 8, 9, 34. As shown in Figure 4, in IELs, only famotidine, 

blocked the suppressive effect of histamine, and restored the cytokine response on 

Th1-cytokine (IFN-γ, TNF-α and IL-2) and IL-4 comparable to the levels without histamine 

treatment. In splenocytes, the restorable effect of famotidine was not observed on IL-4, and 

minute effects were observed on Th1-cytokine compared to those in IELs. 

 To further confirm whether H2R signaling regulates cytokine production, we 

examined the effect of a selective agonist on IEL or splenocyte-derived IFN-γ, TNF-α, IL-2 

and IL-4 production. As shown in Figure 5, dimaprit (10-4 M), a selective H2R/H4R agonist, 

mimicked the suppressive effect of histamine on these cytokine production derived from both 

IELs and splenocytes. Famotidine almost completely eliminated the effects of dimaprit on 

IEL-derived cytokine production. In splenocytes, the restorable effects by famotidine on the 

dimaprit-mediated effects on cytokine production were also significant; however, the 

restorations were rather small compared to those in IELs (Fig. 5). 

 

Histamine decreases the number of INF-γ producing TCRαβ+ cells estimated by 

intracellular cytokine production in IELs 

 We examined whether the effects of histamine on cytokine secretion were also seen 
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in intracellular cytokine production by IELs. Representative dot plots of intracellular 

IFN-γ/IL-4 staining performed after 4 hr are shown in Figure 6A. IFN-γ producing cells were 

detected in IELs activated by PMA plus ionomycin, whereas IL-4 producing cells were too 

few (0.1%) for further evaluation. The number of IFN-γ producing cells decreased in total 

IEL population when treated with histamine compared to the control (12% versus 18%). 

Further, we examined whether this effect of histamine on IFN-γ could be observed in 

TCRαβ+ or TCRγδ+ IELs. Interestingly, IFN-γ producing cells were clearly in the TCRαβ+ 

IEL population but not the TCRγδ+ IEL population (Fig. 6B), and the number of IFN-γ 

producing cells significantly decreased in TCRαβ+ IEL population when treated with 

histamine (Fig. 6B). 

 

Suppressive effects of histamine on Th1-cytokine and IL-4 does not accompany with 

enhancement of IL-10 production in IELs  

 Since increase of IL-10 is well-known to induce peripheral T cell tolerance 15 and 

previous studies revealed histamine increased IL-10 secretion via H2R in DC 35, Th2 cells 

and splenocytes 10, we examined whether suppressive effects of histamine on Th1-cytokine 

and IL-4 accompanied with enhancement of IL-10 production in IELs. IELs certainly 

produced significantly higher levels of IL-10 when activated by PMA plus ionomycin, 

compared to no stimulation control (261.7±48.3 versus. 53.3±24.0 pg/ml). Unexpectedly, 

histamine had no effect on secreted IL-10 level in activated IELs (Fig. 7). Further, in 

splenocytes there is no significant increase of secreted IL-10 when treated by PMA plus 

ionomycin and also no significant effect with histamine. 

 

Histamine reduced IFN-γmRNA expression, but not IL-10 mRNA expression in IELs 

To evaluate the mechanism underlying histamine-mediated cytokine suppression, 
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the cytokine mRNAs levels were also tested to know whether the expression of were 

modulated by histamine under stimulation. We examined real-time PCR to reveal the IFN-γ 

and IL-10 mRNA expression in IELs. As shown in Figure 8, histamine significantly 

decreased the IFN-γ mRNA expression in activated IELs by PMA plus ionomycin at 6 h 

incubation although the difference with/without histamine at 24h incubation turn out to be 

small. On the contrary, IL-10 mRNA expression levels were not modulated by histamine 

treatment. These results suggested that the regulation of cytokine production by histamine is 

attained at mRNA level. 
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Discussion 

 In this study, we have examined for the first time, whether histamine has a direct 

effect on cytokine production in murine IELs in vitro. Our main findings were that histamine 

decreased IEL-derived Th1-cytokine production and also decreased IL-4 production at a low 

level. These suppressive effects of histamine did not accompany with enhancement of IL-10 

production. A selective H2R antagonist (famotidine), but not H1R and H3R/H4R antagonists, 

competed with those suppressive effects of histamine. The effects of histamine were 

mimicked by a selective H2R/H4R agonist (dimaprit), and the effects of dimaprit were also 

competed by famotidine. Our findings involved that the suppressive effects of histamine on 

Th1-cytokine and IL-4 secretion in IELs were mediated predominantly via H2R signaling. 

Further, we found the number of IFN-γ producing cells significantly decreased in TCRαβ+ 

IEL population when treated with histamine and also the expression of IFN-γ significantly 

decreased in histamine treated IEL. The cytokine production by histamine was supposed to 

be attained at mRNA level. 

 IELs arise from both thymic-dependent and thymic-independent sources and they 

are phenotypically and functionally distinct from the T cells of peripheral blood or the spleen 

20, 36. As for the stimulation of IELs, we have tested PMA plus ionomycin and LPS. We also 

intended to use anti-CD3, experiments fail to show the enough stimulatory reaction, and 

variations among the experiments were too high to evaluate the effect of histamine and its 

ligands (data not shown). Although it is well known that LPS activates many cultured cells 

including peripheral blood monocytic cells, we found that LPS did not have an effect on the 

IEL-derived cytokines tested. While splenocytes are composed not only T cells and B cells, 

but also antigen presenting cells (APCs) such as macrophages and dendritic cells which 

express TLR4 37, IELs are considered that they do not express TLR4. 

 Previous studies have shown that histamine regulates monocytes, dendritic cells, T 
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cells and B cells in lymphatic organs and subepithelial tissues, and different effects have 

been observed among these cell types 38. In APCs, H1R and H3R signaling induce 

proinflammatory activity and increased APCs capacity, whereas H2R signaling plays a 

suppressive role on monocytes 39 and monocyte-derived dendritic cells (DCs) 16, 35, 40. In 

peripheral T cells, histamine enhances Th1-type responses by triggering H1R, whereas both 

Th1- and Th2-type responses are negatively regulated by H2R 8. These distinct effects 

suggest roles for H1R in autoimmunity and H2R in peripheral tolerance. In digestive tract, the 

expression of H1R, H2R, and H4R mRNA in the mucosa was reported 5. These reports did not 

distinguish between IELs and other kind of cells such as enterocytes or LPLs. Our findings 

verify that dominantly H2R, but also H1R and H4R, mRNA are expressed on murine IELs 

along with the facts demonstrated immunological response in case of H2R. 

In the present study, histamine suppressed Th1-cytokines and IL-4. H2R-dependent 

effects of Th1-cytokine and IL-4 suppression in IELs are similar to those of peripheral T cells 

which previously reported 8, 41. These effects may be the reflection of the functional 

characteristics of T cell tolerance in mucosal epithelium as IELs are crucial for the mucosal 

response to foreign antigens. Increase of IL-10 is well-known to induce peripheral T cell 

tolerance 15. Since earlier reports have revealed histamine enhanced IL-10 secretion through 

H2R in monocytes, DCs, PBMC and splenocytes 9, 10, 35, 40, we examined whether secreted 

IL-10 level in IELs was also affected by histamine. Contrary to our prediction, there are 

significant differences in IL-10 production in IELs compared to that of splenocytes. The 

suppressive effects of histamine did not accompany with enhancement of IL-10 production or 

IL-10 mRNA expression in IELs. Our findings suggested that the other mechanisms may 

exist to suppress the cytokine production for T cell tolerance in IELs. Since former report 42 

suggested that the adherent cells were the key modulator of histamine-mediated effects on 

IL-10 production in splenocytes, small amount of IL-10 production in current experiments 
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was may be due to different condition of the cell stimulation; i.e., without adherent cells in 

our study.  

 In the present study, H1R, H3R or H4R-mediated regulation of IELs cytokine 

production was not observed. H2R antagonists are widely used to treat acid-related diseases 

such as peptic ulcer and reflux esophagitis. It is possible that H2R antagonists may affect the 

clinical course of certain gastrointestinal diseases by way of regulating the local mucosal 

immunity rather through the systemic immune regulation. Enhancement of inflammatory 

cytokines and Th1/Th2 dysregulation are present in the intestinal T cells of patients with 

Crohn’s disease 43. Since the suppressive effect of histamine on the IELs is more remarkable 

in the Th1 cytokines rather than Th2, it is possible that histamine may have a protective 

effect on the inflammation of Crohn’s disease which is known to be Th1-polarized 44, 45.  

 Upregulation of histamine and histidine decarboxylase are known to occurs in 

colorectal cancers 13. Endogenous histamine in colon cancer tissues suppresses local tumor 

immunity and promotes tumor growth via H2R signaling 46.The H2R antagonist famotidine 

enhances lymphocytic infiltration in colorectal cancer 47 and cimetidine attenuates 

experimental tumor growth 48. Further, some clinical studies have found survival benefits by 

administering H2R antagonists for the treatment of colorectal cancer 49-51. Given that IELs are 

crucial for immune surveillance of the intestinal epithelium 22, 23, direct regulation of IELs by 

histamine would be associated with the suppression of apoptosis of tumor cells. 

 In this study, we also examined whether the effects of histamine on cytokines were 

reflected in the intracellular cytokine production by IELs. Whereas there were too few IL-4 

producing cells to evaluate the effect of histamine, IFN-γ producing cells were significantly 

reduced by treatment with histamine. Since IELs are heterogenous with regard to their 

phenotype and function 22, we further determined which cell subsets produced this cytokine. 

We found that almost all of the IFN-γ producing cells were TCRαβ+ cells, bit not TCRγδ+ 
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cells. This suggests that there are functional differences, with regard to the cytokine 

production, in IEL subsets, whereas earlier studies have reported that TCRγδ+ cells produced 

IFN-γ 19, 24, 25. In the previous study, cells were stimulated by anti CD3 mAb, anti TCRαβ 

mAb, or anti TCRγδ mAb 25. 

 There are some limitations in this study. Our findings of regulatory effect by 

histamine on IELs were only observed in the particular condition stimulated PMA plus 

ionomycin in vitro, that is a generally recognized method to activate lymphocytes via protein 

kinase C pathway and calcium-dependent mechanisms. The purified IELs are relatively 

fragile to assess their functional characteristics, and are more difficult to examine their 

secreted cytokines than the other leucocyte’s compartments such as PBMCs and splenocytes. 

Therefore, further examination in gastrointestinal disease models in vivo may be required to 

determine the extent of effects of our findings. 

 In summary, we have presented the basic mechanism of histamine-mediated 

immunoregulation of IELs in vitro. Histamine has a direct suppressive effect on IEL-derived 

Th1-cytokines and IL-4, which may have an important role in the local immunoregulation of 

the intestinal epithelium. The inhibitory effects of histamine on Th1-cytokines in IELs were 

mediated predominantly via H2R signaling. Although further study is required to clarify the 

role of histamine-mediated immunoregulation in the intestinal mucosa in vivo, our findings 

would help to account for an important regulatory mechanism by endogenous histamine for 

the control of mucosal inflammatory functions in several gastrointestinal diseases. 
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Figure Legends: 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Purity and phenotypic characterization of IELs 

Expression of CD3, CD4, CD8, CD11c, TCRαβ, TCRγδ on IELs stained with fluorescence-labeled anti-mouse mAbs were 

analyzed by flow cytometer. These experiments were performed three times with similar results. Side scatter (SS) depends 

on the inner complexity of the particle, and forward scatter (FS) correlates with the cell volume. 

 

 

 

 

 

 

 

Figure 2.  Expression of H1R, H2R, H3R, and H4R mRNA on IELs 

The mRNA expression of histamine receptor subtypes in IELs was detected by conventional RT-PCR. PCR products were 

loaded on 3% agarose gel to check the specificity of the reaction. The bands were visualized by staining with ethidium 

bromide. 
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Figure 3. Histamine decreases Th1-cytokine and IL-4 derived from IELs and splenocytes 

Cells were adjusted to a concentration of 1×106 cells/mL, treated with or without histamine (10-7 and 10-4 M) in the presence 

of PMA plus ionomycin. IELs were incubated for 48 h, and splenocytes were for 24 h. Cytokine levels were measured by 

the CBA system. The data are shown as a percentage compared to the level without histamine and represented as the means 

± SEM in 9 independent experiments. The mean production of IFN-γ, TNF-α, IL-2 and IL-4 in the presence of PMA plus 

ionomycin without histamine in IELs were 3396.9 pg/mL, 396.9 pg/mL, 272.7 pg/mL and 45.2 pg/mL, respectively. In 

splenocytes, the mean production of IFN-γ, TNF-α, IL-2 and IL-4 in the presence of PMA plus ionomycin without 

histamine were 5116.1 pg/mL, 460.3 pg/mL, 392.3 pg/mL and 39.1pg/mL.*, P < 0.05 and #, P <0.01 (compared to the 

control group) 
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Figure 4. A selective H2R antagonist, but not a selective H1R or H3R/H4R antagonist, restored the suppressive effect 

of histamine on Th1-cytokine and IL-4 production on IELs 

Effects of selective histamine receptor antagonists (A) pyrilamine; H1R antagonist, (B) famotidine; H2R antagonist, and (C) 

thioperamide; H3R/H4R antagonist on histamine-inducing inhibition of Th1-cytokine and IL-4 production in IELs and 

splenocytes were examined. Cells were adjusted to a concentration of 1×106 cells/mL, pretreated with pyrilamine (10-5 M), 

famotidine (10-5 M) or thioperamide (10-5 M) for 5 min. Cells were then treated with histamine (10-4 M) in the presence of 

PMA plus ionomycin. IELs were incubated for 48 h, and splenocytes were for 24 h. The levels of cytokine were measured 

by the CBA system. The data are shown as a percentage of the levels in the presence of PMA plus ionomycin without 

histamine, and represent the means ± SEM in 6~10 independent experiments. *, P < 0.05 and #, P < 0.01 (compared to the 

control group) 
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Figure 5.  A selective H2R/H4R agonist mimicked the suppressive effects of histamine on Th1-cytokine and IL-4 

production, that is blocked by a selective H2R antagonist  

Effects of a selective histamine H2R/H4R agonist (dimaprit) on Th1-cytokine and IL-4 production in IELs were examined. 

Cells were adjusted to a concentration of 1×106 cells/mL, pretreated with or without famotidine (10-5 M), a selective H2R 

antagonst, for 5 min, then treated with dimaprit (10-4 M) in the presence of PMA plus ionomycin. IELs were incubated for 

48 h, and splenocytes were for 24 h. The levels of cytokine were measured by the CBA system. The data are shown as a 

percentage compared to the levels without histamine in the presence of PMA plus ionomycin without histamine and 

represent the means ± SEM in 9 independent experiments. *, P < 0.05 and #, P <0.01 (compared to the control group) 
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Figure 6.  Effects of histamine on intracellular IFN-γ/IL-4 production in IELs 

(A) Cells were treated with or without histamine (10-4 M), stimulated with or without PMA plus ionomycin and incubated 

for 4 hr. Expression of intracellular IFN-γ and IL-4 were detected with fluorescence-labeled anti-mouse mAbs and analyzed 

by flow cytometry. These experiments were performed three times with similar results. (B) Effects of histamine on 

intracellular IFN-γ production in TCRαβ+ and TCRγδ+ cells. IELs were pretreated with or without histamine (10-4 M), 

stimulated with or without PMA plus ionomycin, and incubated for 4 hr. Expression of TCRαβ+, TCRγδ+ and intracellular 

IFN-γ were labelled with fluorescence-labeled anti-mouse mAbs and analyzed by flow cytometry. These experiments were 

performed three times with similar results. (C) Quantitative analysis of INF-γ-producting cells with or without histamine in 

between TCRαβ+ and TCRγδ+ IELs. Intracellular IFN-γ positive cells were counted in TCRαβ+ IELs or TCRγδ+ IELs with 

or without histamine (10-4 M), stimulated with PMA plus ionomycin for 4 h. The data represent the means ± SEM in 3 

independent experiments. *, P < 0.05 (compared to the control group) 
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Figure 7.  Production of IL-10 derived from IELs was not affected by histamine 

Cells were adjusted to a concentration of 1×106 cells/mL, treated with or without histamine (10-7 and 10-4 M) in the presence 

of PMA plus ionomycin and incubated. The levels of IL-10 were measured by the CBA system. The data represent the 

means ± SEM in 5~10 independent experiments. Mean production of IL-10 in the presence of PMA plus ionomycin was 

261.7 pg/mL on IELs and 76.7 pg/mL on splenocytes. No significant change was observed among the treatment groups.  
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Figure 8.  Histamine reduced IFN-γ mRNA expression, but not IL-10 mRNA expression in IELs 

Effects of histamine on IFN-γ (A) and IL-10 mRNA (B) expression in IELs. Cells were adjusted to a concentration of 1×106 

cells/mL, treated with or without histamine (10-4 M) in the presence of PMA plus ionomycin and incubated for 6 h or 24 h. 

Cytokine mRNA levels are normalized to β-actin from same sample. The data represent the means ± SEM in 3 independent 

experiments performed in triplicate. *, P < 0.05 (compared to the absence of histamine group) 
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Table 1    Cytokine production in IELs compared with splenocytes 

 Control  PMA (40ng/mL) + 
ionomycin (4μg/mL) 

LPS (1μg/mL) 

IELs (pg/mL) (pg/mL) (pg/mL) 
IFN-γ 5.4 ± 0.4 3473.6 ± 578.9  (p < 0.01) 4.7 ± 0.8    (n.s.) 

TNF-α 40.6 ± 4.5 228.5 ± 71.4    (p < 0.05) 40.0 ± 6.4   (n.s.) 

IL-2 6.9 ± 1.8 133.8 ± 10.7    (p < 0.01) 4.2 ± 0.8   (n.s.) 

IL-4 10.5 ± 2.5 40.1 ± 6.3     (p < 0.01) 6.2 ± 1.3   (n.s.) 

IL-5 8.9 ± 4.2 13.8 ± 5.3          (n.s.) 7.1 ± 1.4   (n.s.) 

Splenocytes (pg/mL) (pg/mL) (pg/mL) 

IFN-γ 3.0 ± 0.5 4045.5 ± 725.9  (p < 0.01) 127.9 ± 33.1  (p < 0.01) 

TNF-α 15.3 ± 2.5 207.3 ± 86.6    (p < 0.05) 302.1 ± 42.4   (p < 0.01) 

IL-2 0.3 ± 0.3 113.6 ± 57.2        (n.s.) 1.4 ± 0.4         (n.s.) 

IL-4 4.3 ± 0.3 48.5 ± 8.3      (p < 0.01) 3.3 ± 0.7         (n.s.) 

IL-5 5.0 ± 2.4  6.1 ± 2.7         (n.s.) 3.6 ± 1.9         (n.s.) 

Data are represented as means ± SEM in 3 ∼ 5 independent experiments.  Cytokine 
production by the conditions were compared to that of control condition. 


