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Abstract 
 

We developed an optical system to detect singlet oxygen produced by chlorin-ringed 

chlorophyll (Chl) species, i.e., Chl a, Chl b, Chl d, and di-vinyl-Chl a, with a high sensitivity 

and examined the relationship between molecular structures and reaction rates. Chl a in 

acetone was the lowest producer of singlet oxygen and the most effective quencher; in 

contrast, Chl b exhibited the opposite properties. These results showed that replacement of 

side chain(s) from a methyl group to a formyl group on the R7 position on a chlorin ring 

induced a higher production and lower quenching of singlet oxygen in Chl molecules. 

 

Keywords: Singlet oxygen, Luminescence, Cyanobacteria, Di-vinyl Chlorophyll a, 

Chlorophyll, Photosynthesis 
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Introduction 

 

Light is an energy source that drives photosynthesis; however, it is also a source of 

light-induced damages to photosynthetic systems. Photosynthetic organisms, especially 

oxygenic photosynthetic organisms, develop rescue reactions to protect them from these 

damages [1]. Photoinhibition is one of the damage reactions that occur in the photosynthetic 

electron-transfer system [2]; in particular, the acceptor-side inhibition of photosystem (PS) II 

is a main cause of photodamage [3]. This inhibition is referred to as a sum of several 

reactions; however, the overall reaction process has not been clarified. This process is 

initiated by over-reduction of PS II, which induces the charge recombination between the 

primary electron donor (P680 or accessory chlorophyll (Chl) a) and the primary electron 

acceptor (pheophytin a, i.e. demetalated Chl a) (scheme); this recombination yields the triplet 

state of Chl a and leads to the production of singlet oxygen via a spin-exchange reaction 

between the triplet state of Chl a and molecular oxygen. This singlet oxygen is harmful to 

cell components and induces the breakdown of the D1 protein, which is a major functional 

component of PS II, to form degradation products with a molecular mass of 16 and 8 kDa [4, 

5]. 

Singlet oxygen is one of active oxygen species as similar to hydroxyl radical, super 

oxide anion radical, and hydrogen peroxide. Singlet oxygen is produced via a photophysical 

process, whereas the other three active oxygen species are produced via photochemical 

reactions. Singlet oxygen is detected using luminescence with an emission maximum at 1275 

nm (7843 cm−1). As its yield is not high, i.e., less than 10−5 in acetone [6], its detection 

method has been improved to higher sensitivity in the infrared region. 

Cyanobacteria are oxygenic photosynthetic prokaryotes that contain Chl a as a common 

pigment (Scheme). Cyanobacteria that contain a novel pigment are produced by introduction 

of a gene for Chl biosynthesis [7, 8]. The mutant species of Synechocystis sp. PCC 6803 

(hereafter referred to as Synechocystis) accumulates di-vinyl (DV)-Chl a instead of 



 4

mono-vinyl (MV)-Chl a [8, 9] by suppression of the specific enzyme responsible for 

chlorophyll synthesis, i.e., protochlorophyllide reductase. This transgenic species is sensitive 

to high light conditions. In addition, cellular DV-Chl a and isolated photochemical complexes 

were bleached within one day under the high light condition [8, 10]. Furthermore, 

acceptor-side inhibition was observed in the form of degradation products of the D1 protein 

[9]. It is reasonable to assume that PS II produces a higher amount of singlet oxygen in the 

presence of DV-Chl a compared with MV-Chl a. Therefore, we tried to measure the singlet 

oxygen directly in Chl solutions using luminescence in the infrared region, as a first step in 

the analysis of the physiological responses to this oxygen species. 

There are several reports on the direct measurement of singlet oxygen produced by Chl 

a or Chl b in solution [11-14]. In our study, as it was necessary to detect a signal from singlet 

oxygen in the DV-Chl a solution, we developed a detection system with a sensitivity that was 

adequate for the estimation of the yield of singlet oxygen. In addition to the three Chl species 

mentioned above, we adopted Chl d as a target species to clarify the effect of side-chain 

replacement in chlorin-ring Chl species on singlet oxygen production. We also examined the 

correlation of singlet oxygen yield with the molecular structures of the Chl species. This 

report represents the first description of the properties of production and quenching of singlet 

oxygen in novel Chl species, i.e., DV-Chl a and Chl d. We detected species-dependent 

changes in yield and quenching rates. 

 

Materials and Methods 

 

Culture of algal species 

Synechocystis sp. PCC 6803 was cultured under the photoautotrophic condition in BG11 

medium at 25°C. The light intensity for growth was adjusted to 25 μmole photon m−2 s−1 [9]. 

Air was continuously supplied through a filter (Millex, Millipore, MA, USA). Mutant 

Synechocystis cells containing DV-Chl a [8] were cultured in the same medium using the 
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same illumination conditions as those used to culture wild-type cells. Acaryochloris marina 

MBIC 11017 was cultured in IMK medium under continuous illumination from an 

incandescent light source (15 μmol photons m−2 s−1) at 25°C [15] with continuous supply of 

air. 

 

Isolation of Chls 

Chl a, DV-Chl a, and Chl d were extracted from the thylakoid membranes of Synechocystis, a 

mutant of Synechocystis, and A. marina, respectively, and Chl b was extracted from the 

thylakoid membranes of spinach. Pigments were extracted using acetone, which was 

followed by replacement of the solvent with chloroform and purification using high 

performance liquid chromatography (HPLC; GULLIVER series, JASCO, Tokyo, Japan). 

Samples were injected into a Senshupak Silica-5301N column (300 mm × 30 mm; Senshu 

Science, Tokyo, Japan) after filtration (0.2 μm) and were then fractionated. The mobile phase, 

which was hexane/2-propanol (100:2), was eluted with a flow rate of 5.0 ml min−1. Pigments 

were detected using a photodiode-array detector (MD- 915, JASCO, Tokyo, Japan). Samples 

were stored in fused glass vessels and kept in the dark at −80°C until use. 

 

Measurements of singlet oxygen 

Emission from singlet oxygen was measured using an apparatus developed and improved for 

high-sensitivity detection, based on a commercially available apparatus (NIR-PII system, 

Hamamatsu Photonics K.K., Hamamatsu, Japan, Fig. 1A). The oxygen concentration in 

acetone solutions was not controlled; however, it was equilibrated with air. The excitation 

pulse was obtained using a dye laser excited by a Nd:YAG laser (Tempest, New wave 

research inc., CA, USA). Pulse width and intensity were approximately 10 ns and 300 

μJ/pulse, respectively, and the repetition rate was 30 Hz. Emission of singlet oxygen was 

monitored using an infrared-gated image intensifier (NIR-PII, Hamamatsu Photonics K.K., 

Hamamatsu, Japan) after passage through a polychromator (250is, Chromex, NM, USA). 
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Measurements started 5 μs after application of the excitation pulse, and the exposure time 

was 500 μs. Signals were accumulated by repeated detection (> 300 times) and averaged. 

Calibration of wavelength was performed using a spectral calibration lamp (Krypton type, 

Oriel Instruments, CT, USA). 

Decay curves of singlet oxygen were monitored using the apparatus shown in Fig. 1B. 

The light source was an optical parametric oscillator (OPO) (MOPO-HF, Spectra-Physics, 

CA, USA) combined with a Nd:YAG laser (PRO-250-10, Spectra-Physics, CA, USA). The 

excitation wavelengths were 662 nm (Chl a and DV-Chl a), 646 nm (Chl b), and 687 nm (Chl 

d). Pulse width and intensity were approximately 8 ns and 300 μJ/pulse, respectively, and the 

repetition rate was 10 Hz. Emission was detected using a photomultiplier (R5509-42, 

Hamamatsu Photonics K.K., Hamamatsu, Japan) combined with a monochromator (HR-320, 

Jobin Yvon, France). Data were stored in a multichannel scaler (SR430, Stanford Research 

Systems, CA, USA). Decay curves were simulated with two components, i.e., rise and decay 

component. Rate constants and pre-exponential factors were calculated numerically using the 

Igor Pro software (Wave Metrics, OR, USA). All measurements were performed at 22°C. 

Absorption spectra was measured before and after decay measurements to monitor the 

photobleaching of Chl samples. 

 

Results 

 

Luminescence from singlet oxygen in solution 

We detected the luminescence from singlet oxygen at 1275 nm in Chl a in acetone (Fig. 2A) 

under reduced light intensity provided by excitation pulse (300 μJ/pulse), to avoid a 

saturation effect of absorbed quanta. The signal-to-noise (S/N) ratio of the observed spectra 

was very high, which underscored the reliability of our measurements. Emission intensities 

depended on the concentration of samples and there was overlap among the observed spectra 

(data not shown). The emission spectra of the four Chl samples were superimposable (Fig. 
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2B), which suggests that the same molecular species was produced. The luminescence 

intensity depended on the concentration of samples, and we estimated the yield of singlet 

oxygen production by dividing luminescence intensity by absorbed quanta (Table 1). The 

relative yields of Chl b, Chl d, and DV-Chl a were 2.24, 1.20, and 1.22, respectively, by 

normalization to the yield of Chl a (1.00). The yields of Chl d and DV-Chl a were 

comparable and were intermediary to those of Chl a and Chl b. 

 

Decay rate of luminescence for the four Chl species 

Rise and decay curves of luminescence were measured on samples that exhibited different 

concentrations of Chl molecules (Fig. 3A); three different conditions were adopted. 

Photobleaching of samples was scarcely observed during measurements, which confirmed the 

reliability of our estimations. Observed decay curves were fitted using the following function: 

 

I(t) = A × (exp(−k1t) − exp(−k2t)), 

 

where I(t) stands for singlet oxygen emission intensity at time t after the excitation pulse; k1 is 

a decay time constant of singlet oxygen; k2 is a decay time constant of Chl triplet state, and A 

is the amplitude of the exponential decay. Rise terms were almost identical in the four 

samples (200 to 210 ns, Table 1) and decay times were also very similar among the samples 

(49 to 55 μs, Table 1). 

 The time constants (k1) observed were plotted as a function of Chl concentration, and 

quenching rate constants were calculated from plot slopes using a regression analysis (Fig. 

3B). It is expected that the extrapolation of these regression lines to the zero Chl 

concentration would yield identical rates that would be dependent exclusively on the type of 

solvent. This was reproduced in our measurements, even if a difference of maximally ~10% 

was observed between Chl a and Chl b (data not shown). The resolved quenching rate 

constants were largest for Chl a (2.26 × 109 L mol−1 s−1), whereas those of Chl b, Chl d, and 
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DV-Chl a were 0.54 ×109, 1.33 ×109, and 1.44 ×109 L mol−1 s−1, respectively (Table 1). This 

difference was dependent on the Chl species. The quenching rates of Chl d and DV-Chl a 

were comparable and were much larger than that of Chl b. 

 

Discussion 

Improvement of a detection system 

The emission yield of singlet oxygen in solution is low [6] and the sensitivity of detection at 

1275 nm using the systems available currently is not necessarily high. These facts led us to 

employ unusual measuring conditions, such as a high Chl concentration, high pulse intensity, 

and long exposure times. These induce aggregation of Chl molecules, saturation of absorption 

light upon excitation, and light-induced damage to samples. Furthermore, we were aware that 

an emission overlapped a weak luminescence from singlet oxygen (data not shown), even 

though the origin of emission was not identified. This emission hindered the accurate 

estimation of the yield of singlet oxygen. These factors led to difficulties in performing 

accurate measurements of singlet oxygen under the conditions used so far. In this study, we 

adopted a gated image intensifier as a detector, which presented the advantage of providing 

high sensitivity up to the near-infrared region and a gate function that eliminated the scattered 

light of the excitation pulse using a synchronous gate mode. It also enabled the selective 

detection of emissions from singlet oxygen. Furthermore, we adopted spectra-measuring 

conditions that included a low pulse intensity, a low Chl concentration, and a short exposure 

time (approximately 10 s). The combination of these factors allowed the improvement of our 

detection system and its adjustment to a condition that was appropriate for the measurement 

of singlet oxygen with a high S/N ratio (Fig. 2A and 2B). 

 

Production and quenching of singlet oxygen in relation to the chemical structure of Chls 

Differences in production and quenching may be closely related to the molecular structure of 

the Chl species. The side groups of Chl a include a vinyl group at the R3 position and a 
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methyl group at the R7 position; these groups are replaced with vinyl and formyl groups, 

respectively, in Chl b, and formyl and methyl groups, respectively, in Chl d. DV-Chl a 

contains an additional vinyl group at the R8 position, while its other side chains are identical 

to those of Chl a (see Scheme). 

The yield of singlet oxygen production in Chl d in acetone was higher by 

approximately 20% than that of Chl a (Table 1). In contrast, the yield of Chl b was more than 

two folds of that of Chl a. A similar result was reported for Chl a and Chl b [13]. The effect 

of the additional vinyl group of DV-Chl a on singlet oxygen production was not significant; 

an yield of DV-Chl a was comparable to that of Chl d. These results showed clearly that the 

major factor that affects singlet oxygen production was the presence of a formyl group at the 

R7 position. 

Chl b showed a very different property regarding quenching. The quenching rate of Chl 

b was one-fourth that of Chl a (Table 1). A lower quenching rate of Chl b compared with Chl 

a in a benzene solution was also reported [16]. Chl d and DV-Chl a showed a clear difference 

when compared with Chl a (Fig. 3B and Table 1), which suggests that side-group substitution 

at the R3 and R8 positions was effective. These results suggest clearly that the replacement of 

the group at the R7 position of Chl a with a formyl group induced a lower quenching rate. 

The effect of side groups on the production and quenching processes of singlet oxygen 

have been reported [12, 13, 16], and a clear difference was shown between Chl a and Chl b. 

In this study, we added two chlorin-ringed Chl species, i.e., Chl d and DV-Chl a, to the 

comparison, and revealed for the first time the presence of a clear effect of the formyl group 

at position R7 of the chlorin-ringed Chl species. This site-specific effect of the formyl group 

suggested that one of properties of a side chain, i.e. the electron attracting property, is the 

main reason for the production and quenching processes of singlet oxygen through changes in 

the electronic states of molecules. In this study, we showed that Chl a produced a least 

amount of singlet oxygen and quenched it most effectively among the four Chl species; this 

property might be linked to its function, that is, Chl a is least suffered from photoinhibition 
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by singlet oxygen and thus is responsible for a key role in photoreactions in photosynthetic 

organisms. Theoretical considerations on this subject will be our next target. 

 

Dynamics of Chls in relation to the quenching process 

The quenching rates of singlet oxygen in Chl solutions were in the range of 109 L mol−1 s−1 

(Table 1), which is comparable to diffusion-limited values and indicates a very fast decay. In 

addition, we did not observe bleaching of Chl solutions during measurements (data not 

shown). This suggests that singlet oxygen did not interact with Chl molecules, which may 

induce photobleaching of solutions. Based on these observations, we concluded that 

quenching occurred via a photophysical process rather than via a photochemical process. This 

is in accordance with a report on the rate constants of the reaction of singlet oxygen with Chl 

a; a sum of the reaction rate, which included physical and chemical reactions, was reportedly 

between 1.2 × 107 and 7.3 × 108 L mol−1 s−1, whereas that of the chemical reaction alone was 

between 2.0 × 106 and 4.0 × 106 L mol−1 s−1 [16]. This indicates clearly that the physical 

process was much faster than the chemical process. However, the reason for the difference in 

the total reaction rate, i.e., less than one-third of our estimation, was not clear. The low rate of 

quenching by Chl b was attributed to photophysical properties. 

The yield and quenching rate are closely related to the photophysical processes of 

individual Chl species. The yields of singlet oxygen in individual Chl samples relative to that 

of Chl a were very different: 2.24, 1.20, and 1.22 for Chl b, Chl d, and DV-Chl a, respectively. 

The rise times of singlet oxygen production were estimated as approximately 200 ns in all 

samples (Fig. 3A and Table 1), which suggests strongly that the energy-transfer time from a 

triplet state to molecular oxygen was almost the same, irrespective of Chl species. Decay 

times of singlet oxygen were also similar among the Chl species (approximately 50 μsec, Fig. 

3A and Table 1). The consistency of the rise and decay times in all samples resulted in an 

absence of significant differences in the observed emission spectra. Therefore, we concluded 

that the differences in singlet oxygen yield among the four Chl species did not arise from 
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variation of energy transfer time or of quenching rates; rather, it seems to have stemmed from 

the yield of the triplet state, i.e., the yield of intersystem crossing. A previous report supports 

the presence of a difference in yield of intersystem crossing between Chl a and Chl b [12]. In 

addition, the fluorescence yield was lower for Chl b [17]. These differences in the 

photodynamic properties of these molecules may be the main reason for the differences 

observed for the singlet oxygen production yield. 

We obtained clear results for the novel Chl species, Chl d and DV-Chl a, regarding the 

effect of the replacement of the side chain(s) of the chlorine-ringed Chls. A formyl group at 

the R7 position was most effective in the production and quenching of singlet oxygen. This 

was the first report that used four different Chl species; therefore, our estimation may 

represent a basis for comparison, as several studies on the yield and quenching of singlet 

oxygen by Chl species reported divergent findings [12, 13, 16]. 

 

Correlation with in vivo phenomena 

Arabidopsis and Synechocystis species that contained DV-Chl a were highly sensitive to a 

high light intensity, and bleaching of Chl species was observed in the tissues or cells of these 

plants [8, 10]. If Chl b is involved in the photochemical reaction centers of PS II, it may 

produce a higher amount of singlet oxygen compared with Chl a, as suggested by the in vitro 

experiment. If this is the case, the use of Chl b as the primary electron donor may be very 

harmful for oxygenic photosynthetic organisms. There are no organisms that use Chl b as the 

primary electron donor, which may reflect the fact that Chl b produces large quantities of 

singlet oxygen. DV-Chl a may be used as an electron donor exclusively under low light 

conditions. A high-light-adapted Prochlorococcus sp. is present in the ocean [18]; this species 

evolved from a low-light-adapted species and, during the transition from a low-light-adapted 

organism to a high-light-adapted organism, an additional modification in the proteins of the 

reaction center may have been included to allow usage of DV-Chl a as an electron donor in 

PS II.  
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The in vitro experiments performed to assess the production and quenching of singlet 

oxygen did not allow us to conclude that the difference between MV-Chl a and DV-Chl a 

may induce a significant difference on the tolerance to high-light conditions. However, the in 

vivo phenomena are significantly different [8, 10]. This discrepancy should be resolved based 

on the measurements of singlet oxygen production on complexes isolated from cells or 

thylakoid membranes. This is a critical point and a target for future analyses. 
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 Figure legends 

 

Scheme. Molecular structure of the four Chl species. 

 

Fig. 1. Experimental setups for the measurement of singlet oxygen. A) Spectrum 

measurement setup and B) decay curve measurement setup. 

 

Fig. 2. Emission spectra of singlet oxygen in the four kinds of Chl species in acetone solution. 

A) Emission spectra of singlet oxygen in Chl a and B) emission spectra of singlet oxygen in 

the four Chl samples in acetone. Spectra were normalized to the intensity observed at 1,275 

nm. 

 

Fig. 3. (A) Rise and decay curves of singlet oxygen in Chl a in acetone solution and (B) 

estimation of the quenching rate constant in the four Chl species in acetone solution. 

 



Table 1: Characterization of singlet oxygen produced in the four Chl species. 

 

  1O2 yield  Rise term  Decay term Quenching rate 

 (relative to Chl a) (ns)   (μs)   (109 dm3 mol−1 s−1) 

Chl a  1.00  200  50  2.26 

Chl b  2.24  200  55  0.54 

Chl d  1.20  210  53  1.33 

DV-Chl a 1.22  200  49  1.44 
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