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Abstract: As a continuation of the author’s previous paper [10], we discuss a certain
multiple Markov Gaussian process X(¢), £ 20, with stationary increments, and give a
detailed description of the canonical representation as well as of the stochastic Ito-

Volterra equation for such a process.

& 1. Introduction

Let X(t) be a centered Gaussian process with stationary increments, which is character-

ized by the structure function (the variance of the increment)

(1) $(lt—s|)=EX()-X(s))*], ¢ s€ER,
(cf. [14]). In this paper we take a rather special form of ¢ (¢) given by
(2) #()=cot +2 3 c.(l—exp[— 24D/ 4, £ 20,

where co 20, ¢; >0 (1= i=m) and A2 ,=0< 1,<-*< 1., and investigate the time evolu-
tion of X(¢), t =0, starting at X(0)=0. The covariance function T' (¢, s) of X(¢) is seen
to have the following expression of Goursat type of order m+1:

(3) I (t,s)={$(t)+¢(s)—¢(t— 3)}/2:i§0fi(t)hi<s);
for 0= s = ¢, where we put

filt)=exp[— A.t] (0=£i=m)and
{ ho($)= 2 e[ filwdu, hi(s)=c [[(1/fiw)du (A= i<m).

For such a Gaussian process X(t), we describe its time evolution by means of two

(4)

kinds of stochastic equations involving Brownian motion B(t). One is the canonical
representation ([1],[2])
(5) X(t)= [ F(t,u) o (WdB(u) with F(t,£)=1;
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Some Multiple Markov Gaussian Processes with Stationary Increments

the other is the stochastic Ito-Volterra equation (cf. [4])
(6) X()=[ K(t, w)dX (+ [, o (WdBu) with K(t,)=0.
In terms of the differential form, the above equations are settled within the well-known

framework of Ito’s stochastic calculus:

(5) dx(t)=dt [ 2-F (t,u) o (w)dB(u)+ o ()dB (1)
and
(6) dxX()=dt [ 2-K (t,u)dX (u)+ o (£)dB (¢).

Here the innovation dB(t) is independent of the past o -field F, (X)= o { X (u); u = t},
which, by virtue of the canonical property of (5), is equal to F.(B)= s {B(u); u= ¢t} for
every t >0. Since the stochastic variation dX (t) observed on the infinitesimal interval
(¢, t +dt) has a natural decomposition

(7) dX(¢)=E[dX(¢) | F,(X)]+ ¢ (£)dB (¢),
the key point of the equations (5" ) and (8" ) lies in the fact that the conditional expecta-
tion in (7) is expressible as # (¢)dt, with ¢ (¢) admitting two equivalent expressions

(8) #(0)=[12F(t,u) o (wdBuw)=[ 2K (¢, u)dX (u).

This paper deals with multiple Markov Gaussian processes having Goursat kernels (3)
as covariance functions, and hence can be thought of as a continuation of the author’s
previous paper [10], in which double Markov processes were discussed in detail. Under
the present restriction of the (m+1)-ple Markov property ({1], [12]), the canonical
kernel F (¢, u) takes the Goursat form of order (m+1):

(9) Flt,u)= 2 fi()g:(w), go(w=1- 3 fi(wg:(w).
In addition, the Volterra kernel K (t,u) in (6) has an analogous expression
(10) K(tw=3 ['f/(9vlsuds, 0=ust,

where v, (¢, ), 1= i =m, are combined with g; (1), 1< i <m, by the resolvent equation
(see (15) in §2).

Now we come to state our main result; we are able to determine exactly those functions
g:(u) and v:(t,u) in (9) and (10) from the given data {f.(¢), k: (s)| in (3) and (4). In
the next section we will show a route of reducing this problem to a certain boundary
value problem for a system of second order linear differential equations with constant
coefficients (see Theorem 1). The system of linear differential equations arising in this
process of reduction will be discussed in the final section (see Proposition 2).

It deserves mentioning that the present approach is also valid in non-stationary cases,
although we will not go into details.

Before closing this section we would like to mention some reasons we focus our atten-
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tion to the particular form (2) of ¢ (t).

(i) The expression (2) admits an immediate generalization like this:
(2') #(t)=cit+2 [ (1—exp[—=2tD) o (dA)/2, ¢20,
where ¢ is a measure on (0, o) such that f: (IN1/ A2 )do (A )<oco. The notation
aAb=min{a, b), a Vb =max(a, b) was and will be used in what follows. Our observa-
tion about (2" ) is now in order: A centered Gaussian process X(t) (X(0)=0) having this
type of structure function possesses the reflection (or T-)positivity ([1], [11]). Namely,
for any n €N, any t1,*,¢, 20 and any a:,*a,.€R, we have the inequality
EL(S aiX (1)) (2 a,X(1,))]

= % aiaj{ ¢<ti)+¢(tj)_¢(ti+ti)}/2

f Ea (I—exp[—a&:1D1% 6 (dA)/ 4 20.
In order to confirm the multlple Markov property, we have imposed a finite support
condition on ¢ and got the expression (2), which corresponds to the choice of o (dA )=

%lci 5“,»}(d/1 )

(ii) We are interested in fractional Brownian motion B, (t) having the structure func-
tion ¢,(t)=¢" 0< h<2. The canonical representations of B, (¢) and related processes
are well known ([6], [7] and [8]). On the other hand, the stochastic Ito-Volterra
equation is not an immediate consequence of the canonical representation; we must face
difficulties that come from the fact that the stochastic variation dB, (t) is of the form
&, (dt)»? (£,has N(0,1)), and refuses us to apply the usual equation (6") of Ito type.

When the exponent A moves in the range 1< A <2, the derivative B.(t), tER, is a
stationary generalized process and possesses the reflection positivity. Hence its time
evolution can be well described by appealing to the theory of KMO-Langevin equations
([13]). This remark is due to A. Inoue.

In the other case 0< A <1, the function #,(¢) belongs to the family of (2”) (co=0 and
o(di)=1{h/2T (1—h) A* [da). Since each function in the family can be approximated
by functions of the form (2) as m t o (c¢f. [11]), the present study for multiple Markov
processes would be a necessary step toward a full theory of stochastic infinitesimal
equations ([4]) for the class of all reflection positive Gaussian processes X (¢) with
stationary increments, among which fractional Brownian motions B, (t) are important

members that are characterized by self-similarity ([5]). Detailed discussions of B, (t)
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and their multi-parametrizations B, (x), x €R? (cf. [3],[8] and [9]) will be planned in a
forthcoming paper.
The author is grateful to Professors Y. Okabe and A. Inoue who gave him valuable

advice concerning fractional Brownian motions mentioned above.

§2. The time evolution of multiple Markov Gaussian processes

Let X (t), t =0, be a centered Gaussian process such that X (0)=0 and E [ (X(¢) —
X(s))2]=¢ (| t— s!| ), where the structure function ¢ {¢) is assumed to take the form
(2). The covariance function T (¢, s)=E [X(¢)X (s)], 0= s =t, is immediately computed
and one can reach the expression (3) of Goursat type:

r(t,s)=18(t)+¢(s)—¢(t—s)l/2
= oS +élci¥l—exp [—a:t]l—exp[— A:s]texp[—a:.(t —s)]1/ A;

={c<}s+':§1c,~(1—exp [— Ais])/ki|+§lexp [—Aitlei(exp [ x:is]—=1)/ 1,

I

3 fi(Dhi(s),

where f: (¢) and &;(s) were defined by (4).
It is our central task to analyse the stochastic variation dX (t)=X (¢t +dt)—X (¢t),
observed on the infinitesimal interval (¢, t + dt). Its variance E [(dX(¢t))?] is easily seen

to be of the form & 2(¢)dt, and we get
1 [0 _0o _ 2 2 _
o 2(t)—lslTIrtl [83 I'(t,s) a1 (¢, S)]——Eociﬁ(t)'i‘glc.-@ AG))
=Co+2‘§10i,

which means that o (¢) is constant:

(11) s (=Y e +2 5 ¢ 1= a >0,
Next, we have to compute the conditional explx;ctation E[dX(t) | F.(X)]in (7) based on
the past o -field F, (X).

Since the (m-1)X(m+1) matrix (fi{z,))e=i;=n is always non-singular for any
0< r < 7 .,< < ¢ <00, our process X (t) is expected to possess the (m+1)-ple Markov
property, which tells us that the canonical representation (5) must take the Goursat
kernel (9) of order m+1 (cf.[1]). In the sequel we are going to determine these functions

gi(u)(1= i =m), which should be linearly independent in L*((0, T, du) for every T <oco.
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Now, the canonical representation {(5) with s ()= « leads us to write

(12) ax(t)=dt £ £ (t) [ () «dB W)+« dB (b).
This implies another equivalent form

(13) dX (0)=dt 3 1/ () [ v:(t, w)dX (u)+ 2 dB (2),
as well as its integral version (6) with (10), which we have called a stochastic Ito-
Volterra equation. In view of the canonical property F. (X)=F. (B) for every ¢ >0, it
turns out that each random variable fot g:(u) a dB (u) €EF, (B) is expressible as f; v, (t, u)
dX (u) €F,(X), and hence we can write

ELdX(t) | F.(X)]=pn (8)dt,
| p(0=3 (@) [[gwedB@=3 £ (0) [ vt w)dX (w),
because the innovation dB (¢) in (12) and (13) is independent of F, (X) (cf.(8)). It fol-

(14)

lows from the two equations (12) and (13) that the above kernels v; (¢, u) must satisfy
the following resolvent equation:
(15) v; (¢, u)=gi(u)—f:gi(s)élf/(s)vj(s, u)ds, 1=i=m.

Introducing a matrix-valued function A(£):={(g: (t)f; (t))isi=m, a vector-valued
function g(t)=*(g. (£),*, g (t)) and a vector-valued kernel v(¢, u) =" (v:(t,u), -,
valt,u)), 0= u=<t <co, we get

6 ! Dov(t,w=—AD)v(t, u)
v(t, t)=g(1),
which yields
(17) vt W) =exp [~ [ Als)dslg(w).
We are now ready to derive an integral equation that determines the Volterra kernel

v(t, u). To this end, we first note that

E[dX ()X (s)]= {g—ur (uV's, uAs) | du,

5 S fioh W (0<u<s)
a—uF(u\/s,u/\s)Z {Jmo
_Elf,»'(u)hj(s) (s<u).

Since the innovation dB (t) is independent of X (s), 0< s <t, we obtain, as a consequence
of (13),

$ () [oit, 2T (Vs uns)du =2-T (t, 5)

Paite o 7 du ’ ot »Ea
which yields the required integral equation

18) 3 W1 E 1) [Jviltwh (Wdu+ 3 () [Tvi (e )] (u)dul
i= =0 i= s
= ‘Elfi/ (t>hi (S)

for all 0< s < ¢t <oo,
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For each t >0 fixed, it suffices to seek a solution v(z, s) to the equation
(19) [ hi @) v (6 wdu+ [ <F (), 0" (w)> v (t, u)du
+f:<h(s),f’(u)>v(t,u)du=h(s), 0< s< ¢,

where h (s)=¢(hi(s),*,hn (s)) and <f, h> denotes the inner product. Differentiate both
sides of (19) with respect to s and apply the formula of ¢ 2(¢). We thus arrive at the key
equation

(200 atv(ns)+[ <F(sVu), 0 (sAw>v (6 wdu=h(s), 0<s<t.

In order to derive a linear differential equation of the second order from this equation
(20), we put

Pi(t):=—h/ (¢)/f] () =c;exp [24,t]/ 2, >0,
p;(6):=PF (t)=22,;P(¢).

Then <f (s\Vu),h’ (sAu)>=—<F (s)-P(sAu), f (u) > with multiplication a*b defined
by (a*b),=a:b:, 1= iSm Applying the integration by parts formula and noting that

(21) Zoxp [— [ A()dsT= (v, (6, u)f] (W) 1=isem,
we obtain

f:<f' s\/u) h" (sAu) > v (¢, u)du
=— f exp[ f A()dvltf (s)-P(sAu)du
=h’ (s)+ exp[ fA(v)du]f (s)- P(0)+f exp[—f A(v)dv]f (s)p (u)du.

It follows from (20) that

(22) a lexp [—f:A(U)dU] g (s)+ exp [_fotA(U)dU] f (s)-P(0)

+f:exp[—f:A(v)dv] f (s) plu)du=0, 0<s<¢t.

Now define
(23) v (s 00=[ (exp [ [ Ay p, (Wdu, 0= s=¢,
to get

2—Glc—is—(eXp[—f:A(v)dv])ik
'3 (exp [ [ AQ)d]) s g, ()F ()
== (exp [~ [ AWy p,(0)/ 22+, (55 OIS (517 (9),

which shows that the system of functions {y; (s; t)}/2:, for each fixed i and ¢, satisfies
the following linear differential equation of the second order:
(20) St/ )Lyt (s 0}

HIS) B 5 (g, (050/20,+ 3,45 01 =0, 0<s<
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with boundary conditions
(24") yi(0:0=0 and -Lyi(t;0=0.pi(t), 1Sk=m,
where &' is the Kronecker delta.
At the final stage, we make the transformation
(25) 2 (s; 0= exp[— Ausllyi (s )+ 5 (05 )/ 244 1.
Then the above equation (24) changes into a linear differential equation with constant
coefficients for {z,i(s; £)}7-1:
(26) d%;zki(s ) — Al 2z (s )+ (2¢h An/a Z’)é‘,l/l,-z,-i(s c1)=0, 0=s=t¢.
The boundary conditions (24" ) become
(%) { Azt (0 t)—dizk"(() ;¢)=0 and

Akzki(t;t)—i-gzhi(t;t)=20ké‘k"exp[/1ht], 1=t=m.

We have thus proved that our task to determine {g: ()} in (12) and {v, (¢, )} in (13) can
be reduced to the one to solve the boundary value problem for the second order differen-
tial equation (26).

Conversely, let us assume that we find out a solution {z.'(s; ¢)} to the differential
equation (26) with boundary conditions (26”). Then a combination of (23) and (25) gives
us the expréssion

(27) (exp [—f:A(v)dv])ik =(1/px(s)) 'dds— fexp [Ausled (s5 )1
So we define by (21)

0.t w) = 2 (exp [— [ AW)db]) /17 ()

for arbitrary £ (we put & = i for convenience), which is further calculated by applying
(26):

(28) vi(t,u)=—C(exp[ A:ul/2¢: A,-)Edl? lexp [—2Aiu]—ja (expl Asulzii(u; )}

=(1/2c: A1 Az (u; t)—d%zz zi"(u;t)%=é1 Az (us t)/ ot

By (16) we have

(287) g (w)=vy, u)=_§1/1,-zﬁ(u;u)/a2.

iz
It is now an easy thing to check those integral equations (20), (19) and (18). Set
(13) dB (1) =1dX (t)—dt 3 £ (&) [[vi(t, w)dX (W))/ a,

to find out a true innovation of X (¢). We are thus able to establish the expression (12)
associated to (13) as well as the canonical representation (5) with (9) and (11), which is

nothing but the integral form of (12) and with which we started the present discussions.

Summing up what we have discussed, we state

Theorem 1. If we find a solution |z, (s t)] to the differential equation (26) and (26" ),
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then we obtain the canonical representation (5) with(9) and (11) as well as the stochastic
Ito-Volterra equation (6) with (10), where Volterra kernels v; (t, u) and functions g: (u)

are defined by (28) and (28 ), respectively.

Remark 1. Let U(t), t €R, be a stationary Gaussian process with correlation function
r(1t—s1) of the form
(29) r(t)=élciexp[—/1,-| el
where ¢, >0 (1= i <m), glc,- =1and 0< 2 << 1,<o0, Note that U(¢) is expressible
as a superposition of m\;tually independent Ornstein-Uhlenbeck processes U (¢ A;):
U=/ eUlt;0), teR.

Having in mind the well-known framework of KM:0O-Langevin equations, we consider

(30) XW=U)—E[U) | U0)]=U{)—r()U(0), t 20.
and calculate its covariance function

(31) Pt e)=r(t=s)=r(Or(s)= 3 f(h(s), 0ss=t<e,
where -

(32) filt)=exp[— A:t], hi(s)=ciiexp[A:s]—r(s)} (A=i=m).

In his previous paper [10], the author gave a detailed account of the double Markov
case m=2. As an extension to general cases m=3, we obtain a similar conclusion to
Theorem 1 for the modified process

(30") X (W)=X()/f. (1), t=0,
which has the m-ple Markov property. In other words, by the same method of solving
the boundary value problem for a differential equation of the same character as (26), we
can establish the canonical representation (5) and the stochastic Ito-Volterra equation
(6) for X " (t) and hence for X (¢). This time, the differential equation mentioned above
takes the following form:

(33) %zk"(S;t)—Mzk"(s;t)

n=1
—2ecia( At An/a 2)El( An— A0z (s t)=0, 0< s< t,
where ¢ =V 2§1ci A comes from the v;riance of dX (t), i.e. E[(dX(t))?]=a*dt. The
boundary condti—tions are written as follows:
12=cn) An+T—ci) At X0z (05 8)/len dm+(cx +1) A4l

(53 —-(%zk" (0 ;;):0 and
Anzi(t5 ) +o-zi(t; t)

=240 (At An)8hiexp [ Ant)/ (X —24), 1= k=m-—1.
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§ 3. Linear differential equations of the second order

The final section is devoted to an account of the differential equation (26) with (267),
which we encountered in the previous section. Indeed, taking into account the fact that
the index i (1= i =m) and the end point t of the interval [0, t] arise only in the boundary
conditions, we are first going to discuss a general solution z, (s) defined on the whole
interval s =0 to the following system of differential equations:

(34) zf(s)—xizk(s)+(2ck/1h/az)élA,z;(s)ZO, 1I=k=m.
Then the relevant boundary conditions
2220 (0)—2,(0)  and
(85) { Xezn(t)+zi (£)=2cudriexp [ Axt], 1<k=m,

would determine our desired solution 2, (s ; t), and hence v, (¢, u) and g; (z) by (28) and
(28").

Let us begin with the simplest case m=1. The above (34) is rewritten as follows:

(347) 27 (s)=p2(s), p:=vVe/lco+2c) A E[0, A1),
which implies a general form of the solution:

(36) z(s)=ae(s; #)+bd(s; ¢),
where we used the notation

e(s; p¢)=coshys and d{s; p)=sinhus/pu,

on the understanding that e (s;0)=1,d (s; 0)=sin the case # =0 (i.e. co=0).

The boundary conditions (35) for each fixed ¢t >0, give us the values a =a (¢) and
b=b(t):
(37) { a=crexpl A1 t]/{ he(t; p)+((cotei)/(cot2e)) Ard (t; #)L,

b=ia.
Hence we arrive at the following formula:

(38) zit(s;e)=cirexplAitlle(s; )+ aid(s; #)l/

/are(t; p)+({eote)/(eot2c)) 20d (£ p)i.

We now proceed to the general case m=2. We have to study the eigenvalue problem

for the mX m matrix
R=(3,"A}=ckia,/ e/ D+ £ ext)isisen,

by which (34) has a neat expression

(347) 27(s)=Rz(s), z(s)="(z:1(s),, z.(s)).

Let us take a column vector q ( # ) having i-th component ¢, ( # ) =2c. A, /(g2 — 1 })

and depending on a positive parameter #. Then we see that
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(Ra(p)i=2eil a1/ (u2=a)=( £ eat/ (=21 (ea/ 2+ 5 1)
=2 A A/ (= aAD+l=ptq(p),
if ¢ is a solution to the equation
(39) Zeal/(pt=ah o2+ §e=0, x>0,
It is easily shown that this equation has m distinct roots { #;}2: such that A ,=0=p,<
A< < < 2. When co=0, the first root #: is equal to 0; otherwise z:>0. We
have thus diagonalized the matrix R:
RQ=Q(8; 1} )isiisn, Q@=(q:(#;))isijznm
We are now ready to obtain a general solution to (34" ). Put w(s)=@Q 'z (s) to get
w! ()=(Q'2" () =(Q 'R Qw(s)) =t Tw: (s),
which implies
wi(s)=aie(s; p:)+b:d(s; 1y), 1= i<m,
with m pairs of coefficients (a:, b:). Thus we have a required expression
(40) z:(s)=(Qw(s)); =2 c,-/\ijg{a,-e(S; #i)+b;d(s; p )/ (ni—2at).
By virtue of (40), the boundary conditions (35), for each i (1= i =m) and ¢t >0 fixed,
change into the following system of linear equations:
3 (Awa;=b)/(#}=21)=0  and
(41) éli(he(t; p)+pid(t; p))a;+(elt; u)+ a,d(t; #:))b;1/
Jut—a)=06,explact]/as, 1= k=m.
The well-known formula
[(ui=aD == 0 (i —pD(a5=ad/ f (e)—ad)
enables us to take the inverse (1/(«} — A1) '=(p,; ), and from the first equality of
(41) we write
(42) bj=k§=lijﬂkah/(#f.—ki)zlélT,—hah,
with z-,-,.:ZéIP;u\k/(#i—/\i). In the case m=2, we have
ru={ A (A= D= 2D+ 2 (A= DA i—p )/ (i—pD(Ai—21),
te=(2:= 20— D(Ai—pgD)/(ui—p (13- 21),
ta=(A:— A )(pui—a)(Ad—p8)/(pt—p1)(AE-21), and
ra={ A (A= DA i—p D+ 22— D= A D/ (ei—p DX -2 1),
Substituting (42) into the second equality of (41), we now get
EiChuee; m)tpuid(e; w)/(x1=21)
(43) + 2 (e (t; mn)+ Aed (5 20)) o/ (=2 Dla
=diexp[Axt]/An, 1=k=m,

which should determine the desired values a; =a; (t), and hence b, =b; (t), 1= j = m.
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We set
(Awe(t; m)+pfdle; #))/(ei—2ak)
+ 2 (e lt; )+ and(t; #a)) wu/(pi=20)
to see that ltlln(} An(E)=122./(n?—22) | #0. If we define
(45) T.:=inf {t >0; A, (t)=01,
we have 0<7T,, <oco and {(—1)"A, (¢)>0 for all £ <7, . That is, the equations (42) and

(44) AL(t):=

(43) give us unique solution {a;, b;} for each t €(0, T\, ).

Conjecture. T, =0 for every m, i.e. (—1)"A, (£)>0 for all £ >0.
Our conjecture is true for m =1. For m =2, however, the problem of determining the
exact value of T, is beyond the author’s abilities, even in the simplest case m=2:
A()=[{(A+oi)elt; po+ (et 2ic)d(E; e/ (ei—2a1)
+raile(t; po)+aud(e; 12))/((i—2a1)]IX
X[ziale(t; pi)+ad(t; )/ {pti—ad)
(At ra)e(t; pa)H i+ a2r22)d(t; p)/(ri=2%)]
—[ziale(t; i)+ a:d(t; )/ ((ni—21)
Hi(Aitre)e(t; p)H(ué+Aaic0)d(E; )t/ (i—21)]1X
XAt zi)ele; p )+ (it 2000 d s #O)/(2t=214)
+raie(t; pa)ta.d(t; #:))/(ni—ah)]

What we have proved so far is summarized as follows:
Proposition 2. The boundary value problem (35) for the differential equation (34) has,
forevery i (1=i=<m) and t (0< t < T, ), unique solution z,'(s; t) of the form (40) with
coefficients (a;, b;) determined by (42) and (43).

Remark 2. For the differential equation (33) in Remark 1, we can go on the lines of the
above discussions to reach a similar conclusion to Proposition 2. Indeed, the (m—1) X
(m—1) matrix

R =(s7At+eadi( Rt 2.)(2n=2,)/( 5 edn)
can be diagonalized by @ =(csds(As+ 2n )/ (! — A%)), where the #; with A< ¢
Lo g 1< A, are taken to be roots of the equation

Tad (i AN/ =an=2 e w0,

(cf. [111,[12]). So we have a general solution of the form
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(46)  a(s)=enda (it A0 T e (s ) o,d (55 )1/ (i = ah),
and the boundary conditions (33") become the following linear equations:
S (A —b)/ (= A1) =0
(A% 1 =2:1(2=cn) An +(A—ci) Ast/lendmn +(1+ci) Axl)  and
E%(Ake(t; p)Fpdlts m)a (et w)+ and (t; 1)1/ (i~ ak)
=28iexp[A:t)/(An—24), 1=k=m—1.

This system of linear equations determines the required coefficients a; =a, (t), b; =
b, (¢) in (46) to obtain the solution z,' (s; t) foreachi (1= i=m—1) and t (0, Tn 1),
where we put
(Awe(t; p)tpddle; )/ (=24
| '3 (e (65 )+ Aad(es 1)) e/ (ni= 20)
with ¢5:="% pudi/(#]=21), and

Tra-i:=inf {t >0; AW-1(8)=0} > 0.

AAmAx(t)Zz

It is also conjectured that Tn-.=oco for every m, which is true for m=2, the double

Markov case treated in the author’s previous paper [10].
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