Fractional Brownian Motion and Generalized KMO-Langevin Equation

メタデータ 言語: eng 出版者: 公開日: 2013-08-27 キーワード (Ja): キーワード (En): 作成者: Noda, Akio メールアドレス: 所属: URL http://hdl.handle.net/10271/219

Fractional Brownian Motion and Generalized KMO-Langevin Equation

Akio Noda Mathematics

野 田 明 男 (数学)

Abstract: From a standpoint of the stochastic Ito-Volterra equation and the canonical representation of Gaussian processes ([13] and [2]), we investigate self-similar processes derived from fractional Brownian motions ([10]). In particular, we generalize a key property of T-positivity that was assumed in Okabe's theory for stationary Gaussian processes ([15] \sim [17]).

Key words: Fractional Brownian motion, Fractional calculus, Canonical representation, Stochastic Ito-Volterra equation, T-positivity, Multiple Markov Gaussian process, KMO-Langevin equation.

§ 1. Introduction

The present paper is, in some sense, a continuation of the author's previous papers $[11] \sim [14]$. As was mentioned in Introduction of [13], a fractional Brownian motion $B_h(t)$ with exponent $h \neq 1$, 0 < h < 2, has these important properties:

(i) Gaussian in distribution; (ii) self-similarity; (iii) stationarity of the increments; (iv) the fractional nature $(dt)^h$ of the variance of the infinitesimal increment $dB_h(t) = B_h(t+dt) - B_h(t)$. This last property refuses one to apply a familiar stochastic Ito-Volterra equation of the form

(1-1)
$$dY(t) = \{ \int_0^t k(t, u) dY(u) \} dt + \sigma dB_0(t),$$

where $B_0(t)$ is a standard Brownian motion that expresses the innovation process of a Gaussian process Y(t), $t \ge 0$.

Keeping such a fractional nature of $B_h(t)$ in mind, we here deal with two self-similar Gaussian processes $X_{h,1}(t)$ and $X_{h,2}(t)$, which express the odd and even parts of the fractional Brownian motion, respectively. Their canonical representations were obtained in

[10]:

(1-2)
$$X_{h,i}(t) = C_h \int_0^t f_{h,i}(t/u) u^{(h-1)/2} dB_0(u),$$

where we see that the kernel $f_{h,i}(s) \sim (s^2-1)^{(h-1)/2}$, as $s=t/u \downarrow 1$. In order to grasp the main term $\sigma dB_0(t)$ in a stochastic equation like (1-1) for such processes, we are naturally led to operate the fractional derivative D_{α} of order $\alpha = (h-1)/2$, to study new processes $Y_{h,i}(t) = D_{\alpha} X_{h,i}(t)$ in § 2. Then we get

(1-3)
$$Y_{h,i}(t) = C_h \int_0^t g_{h,i}(t/u) dB_0(u).$$

with a finite positive value g_h , i(1).

This canonical representation (1-3) of the transformed process $Y_{h,i}(t)$ enables us to write

(1-4)
$$dY_{h,i}(t) = \{-\int_0^t j_{h,i}(t/u)u^{-1}dB_0(u)\}dt + \sigma_h dB_0(t), \quad t > 0,$$

with positive constant $\sigma_h = C_h g_{h,i}(1)$ and $j_{h,i}(s) = -C_h \frac{d}{ds} g_{h,i}(s)$ (Proposition 1).

Associated with (1-4), we need consider the resolvent equation for the Volterra kernel $r(t,u)=j_{h,i}(t/u)(\sigma_h u)^{-1}$,

(1-5)
$$k(t,u) + r(t,u) = \int_{u}^{t} r(t,v)k(v,u)dv, \quad 0 < u < t.$$

Whenever we find a solution k(t,u) of this integral equation, we can reach our goal in § 2, i.e., the following stochastic Ito-Volterra equation that is shown to be equivalent to (1-4) above (cf. [2], Chapter 6):

(1-1')
$$dY_{h,i}(t) = \{ \int_0^t k(t,u) dY_{h,i}(u) \} dt + \sigma_h dB_0(t), \quad t > 0.$$

Indeed, we are going to prove the existence of such a solution k(t,u) of (1-5) in the simplest case $0 \le h \le 1$ and i=1 (Theorem 2). Since the kernel r(t,u) does not satisfy a familiar L^2 -integrability condition

$$\int_0^T \{ \int_0^t r^2(t,u) du \} dt < \infty \text{ for any } T > 0,$$

we follow our approach taken in [11]. Namely, we show the following inequality instead:

Then we easily find a desired solution k(t,u) in the L^{∞} -space, by means of a well-known expansion

(1-7)
$$k(t,u) = -\sum_{n=1}^{\infty} r^{(n)}(t,u),$$

 $r^{(n)}(t,u)$, n=1, 2, \cdots , being the iterated kernels of r(t,u) ([19]).

In § 3, we take up another approach toward a KMO-Langevin equation describing the fractional Brownian motion. By a well-known change of parameter, any self-similar Gaussian process can be transformed into a stationary Gaussian process. Stationary processes $Z_{h,i}(x)$, $x \in \mathbb{R}$, thus transformed from $X_{h,i}(t)$, $t \ge 0$, turn out to have a notable structure of their spectral density functions. With this observation in mind, we are going to discuss a generalization of T-positivity (=reflection positivity=OS positivity, also used as a terminology).

In fact, we investigate a KMO-Langevin equation for a general <u>multiple Markov</u> stationary Gaussian process Z(x) having a correlation function $\gamma(|x-y|)$ expressible as follows:

(1-8)
$$\gamma(t) = \sum_{i=1}^{N} p_i \exp[-a_i t], \quad t \ge 0,$$

with $0 < a_1 < a_2 < \cdots < a_N < \infty$, and $p_i \neq 0$ for every i. Let $\{U_i(x)\}_{i=1}^N$ be a sequence of mutually independent Ornstein-Uhlenbeck processes with correlation functions $\exp[-a_i|x-y|]$, $1 \leq i \leq N$. Then our process Z(x), independent of all $U_i(x)$ such that $p_i < 0$, satisfies the following equality in distribution:

(1-9)
$$Z(x) + \sum_{i=1}^{N} \sqrt{\max\{-p_i, 0\}} U_i(x) = \sum_{i=1}^{N} \sqrt{\max\{p_i, 0\}} U_i(x).$$

In case $p_i > 0$ for all i, the process $Z(x) = \sum_{i=1}^{N} \sqrt{p_i} U_i(x)$ becomes T-positive, for which the author has discussed the KM₂O-Langevin equation in [12] and [13].

Now we are ready to state our assumptions. In addition to the usual condition

(1-8')
$$\gamma(0) = 1, \quad \frac{d}{dt}\gamma(0+) = -\sigma^2/2 < 0, \text{ and } \int_0^\infty \gamma(t)dt = \tau^2 > 0,$$

we impose more general condition than that of T-positivity:

(SC) The number $S(p_0, p_1, \dots, p_N, p_{N+1})$ of sign changes of the extended sequence $\{p_i\}_{i=0}^{N+1}$ is equal to 2,

where we always set $p_0 = p_{N+1} = -1$ in the present paper. A good example including negative p_i and satisfying (SC) comes from a suitable approximation to $Z_{h,i}(x)$, 1 < h < 2, mentioned above. On the other hand, for 0 < h < 1, each stationary process $Z_{h,i}(x)$ turns out to be T-positive (see Remark 2).

Under the present assumption of (SC), which contains the case of T-positivity, we are going to study the spectral density function

(1-10)
$$\phi(\lambda) = \int_{-\infty}^{\infty} \exp[i\lambda x] \gamma(|x|) dx / 2\pi = \sum_{k=1}^{N} p_k a_k / \pi(\lambda^2 + a_k^2),$$

and find its N-1 distinct roots $\{ib_j\}_{j=1}^{N-1}$ with $0 < b_1 < b_2 < \cdots < b_{N-1} < \infty$. In view of the

roots $\{ib_j\}_{j=1}^{N-1}$ and the poles $\{ia_k\}_{k=1}^N$ of $\phi(\lambda)$ distributed on the positive imaginary axis, the associated outer function $c(\lambda)$ is concluded to admit three different expressions:

(1-11)
$$c(\lambda) = \sigma \prod_{j=1}^{N-1} (i\lambda + b_j) / \prod_{k=1}^{N} (i\lambda + a_k) = \sigma \sum_{k=1}^{N} r_k (i\lambda + a_k)^{-1}$$
$$= \sigma \{ (i\lambda + q_0) + i\lambda \sum_{j=1}^{N-1} q_j (i\lambda + b_j)^{-1} \}^{-1}.$$

By these neat expressions (1-11), we are able to proceed on the lines of Okabe's theory ([15] \sim [17]), to establish the canonical representation of Z(x) and the KMO-Langevin equation describing the time evolution of Z(x) (Theorem 3).

The final topic (Proposition 4) is to discuss in detail the particular case N=3 without the above restriction (SC). Namely, when $p_1>0$, $p_2<0$ and $p_3>0$ (which means that $S(p_0, p_1, \dots, p_4)=4$), we take up a sufficient condition that still guarantees the validity of (1-11). In the general N case, however, such an attempt would cause us difficulties.

§ 2. Fractional Brownian motion and fractional calculus

This section is devoted to a study of stochastic Ito-Volterra equations for self-similar Gaussian processes which are derived from the fractional Brownian motion $B_h(t)$ by using fractional calculus. In order to find a stochastic equation for $B_h(t)$, the main difficulty comes from that fractional nature $\mathsf{E}[(dB_h(t))^2] = (dt)^h$ mentioned in § 1. We therefore use the fractional derivative D_α of order $\alpha = (h-1)/2$, and define a new process Y(t) having this nice property:

(2-1)
$$E[(dY(t))^{2}] = \sigma^{2}dt + o(dt) \quad (\sigma > 0),$$

which is expected to provide us with a stochastic Ito-Volterra equation of Y(t) in terms of a standard Brownian motion $B_0(t)$.

Let $B_h(x)$, $-\infty < x < \infty$, denote a fractional Brownian motion with exponent $h \neq 1$, 0 < h < 2 ([7] and [8]). That is, $B_h(x)$ is a centered Gaussian process such that its covariance function $\Gamma_h(x, y)$ is given by

(2-2)
$$\Gamma_h(x, y) = \{|x|^h + |y|^h - |x-y|^h\}/2, \quad -\infty < x, y < \infty.$$

We here study two self-similar Gaussian processes $X_{h,i}(t)$ on $[0, \infty)$, which are derived from $B_h(x)$ in the following way:

(2-3)
$$\begin{cases} X_{h,1}(t) = \{B_h(t) - B_h(-t)\} / \sqrt{2}, & t \ge 0, \\ X_{h,2}(t) = \{B_h(t) + B_h(-t)\} / \sqrt{2}, & t \ge 0. \end{cases}$$

This pair of processes corresponds to the odd and even parts of the original process $B_h(x)$, and we see that $X_{h,1}(t)$ and $X_{h,2}(t)$ are mutually independent. The covariance function of $X_{h,i}(t)$ becomes

(2-4)
$$\begin{cases} \Gamma_{h,1}(t, s) = \{(t+s)^h - (t-s)^h\}/2, & 0 \le s \le t, \\ \Gamma_{h,2}(t, s) = (t^h + s^h) - \{(t+s)^h + (t-s)^h\}/2, & 0 \le s \le t, \end{cases}$$

and we calculate the variance of the infinitesimal increment $dX_{h,i}(t)$ for every t>0:

(2-5)
$$\mathsf{E}[(dX_{h,i}(t))^2] = (dt)^h - (-1)^i 2^{h-1} \{ (t+dt)^h + t^h - 2(t+dt/2)^h \}$$
$$= (dt)^h + O((dt)^2), \quad i = 1, 2.$$

As was stated in § 1, we know the canonical representation of $X_{h,i}(t)$:

(2-6)
$$X_{h,i}(t) = C_h \int_0^t f_{h,i}(t/u) u^{(h-1)/2} dB_0(u), \quad t \ge 0,$$

where $C_h = (\sqrt{\pi} h / \Gamma((h+1)/2) \Gamma(1-h/2))^{1/2}$ and the kernel function $f_h, i(s)$, $s \ge 1$, takes the following form ([10]):

(2-7)
$$\begin{cases} f_{h,1}(s) = (s^2 - 1)^{(h-1)/2}, \\ f_{h,2}(s) = (s^2 - 1)^{(h-1)/2} s^{-1} + \int_1^s (u^2 - 1)^{(h-1)/2} u^{-2} du. \end{cases}$$

Now we introduce the fractional derivative D_{α} of order $\alpha = (h-1)/2$, to define new Gaussian processes

$$(2-8) Y_{h,i}(t) = D_a X_{h,i}(t), t > 0.$$

The explicit form of D_{α} is given in terms of the fractional integral I_{β} of the Holmgren-Riemann-Liouville type ([5]):

(2-9)
$$(I_{\beta}\phi)(t) = \frac{1}{\Gamma(\beta)} \int_{0}^{t} (t-u)^{\beta-1} \phi(u) du, \quad t > 0.$$

Indeed, we have, for $0 \le h \le 1$,

$$(2-10) Y_{h,i}(t) = (I_{-\alpha}X_{h,i})(t) = \frac{1}{\Gamma((1-h)/2)} \int_0^t (t-u)^{-(h+1)/2} X_{h,i}(u) du,$$

and for $1 \le h \le 2$,

$$(2-10') Y_{h,i}(t) = \frac{d}{dt} (I_{1-a} X_{h,i})(t)$$

$$= \frac{1}{\Gamma((3-h)/2)} \frac{d}{dt} \left[\int_0^t (t-u)^{(1-h)/2} X_{h,i}(u) du \right].$$

By (2-6) and (2-10), for 0 < h < 1 we can write

$$Y_{h,i}(t) = C_h \int_0^t \left\{ \frac{v^{(h-1)/2}}{\Gamma((1-h)/2)} \int_v^t (t-u)^{-(h+1)/2} f_{h,i}(u/v) du \right\} dB_0(v).$$

Then, putting $p=(u-v)/(t-v)\in(0,1)$ and $s=t/v\in(1,\infty)$, the above integral in

becomes

$$\begin{split} &\frac{v^{(h-1)/2}}{\Gamma((1-h)/2)}(t-v)^{(1-h)/2}\int_0^1(1-p)^{-(h+1)/2}f_{h,i}(1-p+pt/v)dp\\ &=\frac{(s-1)^{(1-h)/2}}{\Gamma((1-h)/2)}\int_0^1(1-p)^{-(h+1)/2}f_{h,i}(1-p+ps)dp, \end{split}$$

which we denote simply by $g_{h,i}(s)$.

By (2-7), we compute $g_{h,i}(s)$ as follows:

$$\begin{cases} g_{h,1}(s) = \int_0^1 \{(2-p+ps)p\}^{(h-1)/2} (1-p)^{-(1+h)/2} dp / \Gamma((1-h)/2) \\ \\ g_{h,2}(s) = \int_0^1 \{(2-p+ps)p\}^{(h-1)/2} (1-p+ps)^{-1} (1-p)^{-(h+1)/2} dp / \Gamma((1-h)/2) \\ \\ + (s-1) \int_0^1 \{(2-p+ps)p\}^{(h-1)/2} (1-p+ps)^{-2} (1-p)^{(1-h)/2} dp / \Gamma((3-h)/2). \end{cases}$$

We thus arrive at the following canonical representation of $Y_{h,i}(t)$ in the first case 0 < h < 1:

(2-12)
$$Y_{h,i}(t) = C_h \int_0^t g_{h,i}(t/u) dB_0(u).$$

Here, the kernal function $g_{h,i}(s)$ was given by (2-11).

We can similarly proceed to the canonical representation of Y_h , i(t) in the second case 1 < h < 2. By (2-6) and (2-10'), we are led to set

$$g_{h,i}(s) = \frac{1}{\Gamma((3-h)/2)} \frac{d}{ds} [(s-1)^{(3-h)/2} \int_0^1 (1-p)^{(1-h)/2} f_{h,i}(1-p+ps) dp],$$

and we obtain (2-12) also in this case. The exat form of the kernel $g_{h,i}(s)$ follows easily from (2-7):

$$\begin{cases} g_{h,1}(s) = \int_0^1 \{(2-p+ps)p(1-p)^{-1}\}^{(h-1)/2} dp / \Gamma((3-h)/2) \\ -(s-1)\int_0^1 (2-p+ps)^{(h-3)/2} p^{(h+1)/2} (1-p)^{(1-h)/2} dp / \Gamma((1-h)/2), \\ g_{h,2}(s) = \int_0^1 \{(1+p(s-1)^{(h-1)/2}\} \{(2-p+ps)p(1-p)^{-1}\}^{(h-1)/2} \\ (1-p+ps)^{-2} dp / \Gamma((3-h)/2) - (s-1)\int_0^1 (2-p+ps)^{(h-3)/2} p^{(h+2)/2} \\ (1-p)^{(1-h)/2} (1-p+ps)^{-1} dp / \Gamma((1-h)/2). \end{cases}$$

Now, we are in a position to derive stochastic equations for our self-similar processes $Y_{h,i}(t)$, i=1, 2. Noting that the two expressions (2-11) and (2-11') yield the same value $g_{h,1}(1) = g_{h,2}(1) = 2^{(h-1)/2}\Gamma((h+1)/2)$, we can set

(2-13)
$$\sigma_{h} = C_{h} g_{h, i}(1) = (2^{h-1} \sqrt{\pi} h \Gamma((h+1)/2) / \Gamma(1-h/2))^{1/2}$$
$$= (2^{h} \sin(\pi h/2) \Gamma((h+1)/2) \Gamma(h/2+1) / \sqrt{\pi})^{1/2} > 0.$$

Then the canonical representation (2-12) enables us to write

(2-14)
$$dY_{h,i}(t) = \{-\int_0^t j_{h,i}(t/u)u^{-1}dB_0(u)\}dt + \sigma_h dB_0(t), \quad t > 0,$$

where we put

$$j_{h,i}(s) = -C_h \frac{d}{ds} g_{h,i}(s), \quad s > 1.$$

The explicit forms of $j_{h,i}(s)$ follow immediately from (2-11) and (2-11'), although we do not go into details here.

We can summerize the above discussions as follows:

<u>Proposition 1.</u> The self-similar Gaussian process $Y_{h,i}(t)$ defined by (2-8) admits the canonical representation (2-12) as well as the expression (2-14) for the infinitesimal increment $dY_{h,i}(t)$.

We are ready to face the main problem in this section. Under some condition that guarantees the existence of a solution of the resolvent equation

(2-15)
$$k(t, u) + j_{h,i}(t/u)(\sigma_h u)^{-1} = \int_u^t j_{h,i}(t/v)(\sigma_h v)^{-1}k(v, u)dv,$$

for every 0 < u < t, we reach the following stochastic Ito-Volterra equation as an equivalent equation to (2-14) above:

(2-16)
$$dY_{h,i}(t) = \{ \int_{0}^{t} k(t, u) dY_{h,i}(u) \} dt + \sigma_{h} dB_{0}(t), \quad t > 0,$$

where the kernel k(t, u) is taken to be a solution of (2-15).

In the present paper, we must be contented with finding a solution of (2-15) only in the case $0 \le h \le 1$ and i = 1; The remaining cases as well as the multiparameter cases studied in [10] are planned to be discussed in a forthcoming paper.

In the case $0 \le h \le 1$, we obtain

$$j_{h,1}(s) = \{C_h(1-h)/2\Gamma((1-h)/2)\} \int_0^1 (2-p+ps)^{(h-3)/2} \{p(1-p)^{-1}\}^{(h+1)/2} dp$$

$$= \sigma_h d_h \int_0^1 (2-p+ps)^{(h-3)/2} \{p(1-p)^{-1}\}^{(h+1)/2} dp > 0,$$

which is decreasing with $\lim_{s\to\infty} j_{h,1}(s) = 0$. Here we simply set

$$d_h = [z2^z \sin \pi z]_{|z=(1-h)/2}/\pi.$$

In order to show a key estimate (1-6) in §1 for this continuous kernel

(2-17)
$$r(t, u) = j_{h, 1}(t/u)(\sigma_h u)^{-1} = -C_h(\sigma_h u)^{-1} \frac{d}{ds} g_{h, 1}(s)|_{s=t/u},$$

we observe that $g_{h,1}(s)$ is positive and decreasing with $\lim_{s\to 0} g_{h,1}(s) = 0$. Then we have

$$\int_0^t |r(t, u)| du = \int_0^1 r(1, u) du = -C_h \sigma_h^{-1} \int_1^\infty \{ \frac{d}{ds} g_{h, 1}(s) \} s^{-1} ds$$
$$= 1 - (g_{h, 1}(1))^{-1} \int_1^\infty g_{h, 1}(s) s^{-2} ds < 1,$$

which implies that an operator T_r defined by

(2-18)
$$(T_r\phi)(t) = \int_0^t r(t, u)\phi(u)du \text{ for any } \phi \in L^\infty((0, \infty)),$$

is a contraction operator on $L^{\infty}((0, \infty))$. Hence the resolvent equation (2-15) can be solved in a familiar manner (cf. [11] and [19]). Namely, we get the following for each (t, u) such that 0 < u < t:

(2-19)
$$k(t, u) = -\sum_{r=0}^{\infty} [(T_r)^n r(\cdot, u)](t) = -\sum_{r=1}^{\infty} r^{(n)}(t, u),$$

with $r^{(1)} = r(t, u)$ and for $n \ge 2$,

(2-20)
$$r^{(n)}(t, u) = \int \cdots \int r(t, v_1) r(v_1, v_2) \cdots r(v_{n-1}, u) dv_{n-1} \cdots dv_1.$$

$$\{u < v_{n-1} < \cdots < v_1 < t\}$$

We have thus proved the main result in this section.

Theorem 2. The self-similar Gaussian process $Y_{h,1}(t)$ with exponent 0 < h < 1, admits the stochastic Ito-Volterra equation (2-16) with kernel $k(t, u) = -\sum_{n=1}^{\infty} r^{(n)}(t, u)$, where $r^{(n)}(t, u)$ are the iterated kernels of (2-17).

§ 3. Generalization of T-positivity and KMO-Langevin equation

In this section we transform those self-similar processes X_h , i(t), $t \ge 0$, into stationary processes Z_h , i(x), $x \in \mathbb{R}$, to see a notable structure of their spectral density functions, which leads us to investigate a generalization of T-positivity. The KMO-Langevin equation for each N-ple Markov stationary Gaussian process Z(x) discussed here takes this form:

(3-1)
$$dZ(x) = \sigma dW(x) - dx[q_0 Z(x) + \int_{-\infty}^{x} \{ \sum_{j=1}^{N-1} q_j \exp[-b_j(x-y)] \} dZ(y)],$$

where σ , $q_0 > 0$, $0 < b_1 < b_2 < \dots < b_{N-1} < \infty$, $q_j \neq 0$, and W(x), $x \in \mathbb{R}$, is a Wiener process (standard Brownian motion on \mathbb{R}). Under the assumption of T-positivity (cf. [15] \sim [17], and also [2]), we have $q_j > 0$ for all $j = 1, 2, \dots, N-1$. In the present paper, however, we would rather be interested in stationary processes that are not T-positive but satisfy the assumption (SC) stated in § 1, for which $q_j < 0$ holds for some j. In the case 1 < h < 2, the approximate processes $Z_{h,i}^{(N)}(x)$, N=2, 3, ..., discussed in Remark 2 constitute a good

example of such processes.

Let us begin with studying a couple of stationary Gaussian processes that are related to the fractional Brownian motion. From the self-similar process $X_{h,i}(t)$ defined in the previous section, we change parameter to define a stationary Gaussian process

(3-2)
$$Z_{h,i}(x) = e^{-hx} X_{h,i}(e^{2x}) / \sqrt{\Gamma_{h,i}(1, 1)}, \quad x \in \mathbb{R},$$

and calculate its correlation function

$$\gamma_{h,i}(|x|) = \mathbb{E}[Z_{h,i}(x)Z_{h,i}(0)] = e^{-hx} \Gamma_{h,i}(e^{2x}, 1) / \Gamma_{h,i}(1, 1)$$

Explicitly we get, for $t \ge 0$,

(3-3)
$$\gamma_{h,1}(t) = (\cosh t)^h - (\sinh t)^h$$

$$= 2^{1-h} \{ h \exp[-(2-h)t] + \sum_{j=1}^{\infty} {h \choose 2j+1} \exp[-(4j+2-h)t] \},$$

and

(3-3')
$$\gamma_{h,2}(t) = (2^{2-h} - 1)^{-1} \{ 2^{2-h} \cosh(ht) - (\cosh t)^h - (\sinh t)^h \}$$

$$= (2 - 2^{h-1})^{-1} \{ \exp[-ht] - \sum_{j=1}^{\infty} {h \choose 2j} \exp[-(4j-h)t] \}.$$

Note that in the above expansions, both $\binom{h}{2j+1} > 0$ and $\binom{h}{2j} < 0$ hold for 0 < h < 1 and $j=1, 2, \dots$, which tells us that the processes $Z_{h}(x)$ and $Z_{h}(x)$ are both T-positive when 0 < h < 1. On the other hand, when 0 < h < 2, we have the opposite inequalities for all j.

The spectral density function $\phi_{h,i}(\lambda)$ and the canonical representation of $Z_{h,i}(x)$ were obtained in [10]:

$$\phi_{h,1}(\lambda) = (2^{h-1}\pi)^{-1} \{h(2-h)(\lambda^2 + (2-h)^2)^{-1}$$

$$+ \sum_{j=1}^{\infty} {h \choose 2j+1} (4j+2-h)(\lambda^2 + (4j+2-h)^2)^{-1} \}$$

$$= h(2^{h+2}\pi)^{-1} |B((i\lambda+2-h)/4, (h+1)/2)|^2 / B((h+1)/2, 1-h/2)$$

and

$$\phi_{h,2}(\lambda) = \{(2-2^{h-1})\pi\}^{-1} \{h(\lambda^2 + h^2)^{-1} - \sum_{j=1}^{\infty} {h \choose 2j} (4j-h)(\lambda^2 + (4j-h)^2)^{-1} \}$$

$$= h \{(2^4 - 2^{h+2})\pi\}^{-1} (\lambda^2 + (h+2)^2)(\lambda^2 + h^2)^{-1}$$

$$|B((i\lambda + 4 - h)/4, (h+1)/2)|^2 / B((h+1)/2, 1-h/2),$$

B(p, q) being the beta function. The canonical representation is then written in the form

(3-5)
$$Z_{h,i}(x) = C_h(\Gamma_{h,i}(1, 1))^{-1/2} \int_{-\infty}^x F_{h,i}(x-y) dW(y),$$

and the canonical kernel $F_{h,i}(t)$, $t \ge 0$, is expressible as follows:

(3-6)
$$F_{h,1}(t) = \exp[-(2-h)t] \{1 - \exp[-4t]\}^{(h-1)/2}$$
$$= \sum_{k=0}^{\infty} {\binom{(h-1)/2}{k}} (-1)^k \exp[-(4k+2-h)t],$$

and

(3-6')
$$F_{h,2}(t) = \exp[-(4-h)t] \{1 - \exp[-4t]\}^{(h-1)/2} + 2 \exp[-ht] \int_0^t \exp[-(4-2h)u] \{1 - \exp[-4u]\}^{(h-1)/2} du.$$

Remark 1. It deserves to mention that the self-similar process

$$(3-7) X_{h,0}(t) = \{X_{h,1}(t) + X_{h,2}(t)\} / \sqrt{2}, \quad t \ge 0$$

and the associated stationary process

(3-2')
$$Z_{h,0}(x) = e^{-hx}X_{h,0}(e^{2x}), \quad x \in \mathbb{R}$$

have the same characters as $X_{h,i}(t)$ and $Z_{h,i}(x)$ (i=1, 2), respectively. This process $X_{h,0}(t)$ is nothing but the restriction of parameter of $B_h(x)$, and its canonical representation was studied in [9] (see also [11]). Here it should be noted that the correlation function $\gamma_{h,0}(|x-y|)$ of $Z_{h,0}(x)$ is given by

(3-3")
$$\gamma_{h,0}(t) = (\cosh ht) - 2^{h-1} (\sinh t)^{h}$$

$$= 2^{-1} \{ \exp[-ht] - \sum_{j=1}^{\infty} {h \choose j} (-1)^{j} \exp[-(2j-h)t] \},$$

which is T-positive when $0 \le h \le 1$, but not so when $1 \le h \le 2$. In addition, we have

(3-5')
$$Z_{h,0}(x) = 2^{(h-2)/2} |h-1| C_h \int_{-\infty}^x F_{h,0}(x-y) dW(y),$$

and the canonical kernel $F_{h,0}(x)$ takes the analogous form to (3-6): for 0 < h < 1,

$$F_{h,0}(t) = e^{-ht} \left\{ \int_0^{e^{-2t}} u^{-h} (1-u)^{(h-3)/2} du + B(1-h, (h+1)/2) \right\}$$

$$= B(1-h, (h+1)/2) \exp[-ht] - \sum_{j=1}^{\infty} {\binom{(h-3)/2}{j-1}} (-1)^j (j-h)^{-1} \exp[-(2j-h)t],$$

and for $1 \le h \le 2$,

$$F_{h,0}(t) = e^{-ht} \int_{e^{-2t}}^{1} u^{-h} (1-u)^{(h-3)/2} du$$

Inspired by these results on the processes $Z_{h,i}(x)$ (i=0, 1, 2) that are transformed from a single fractional Brownian motion $B_h(x)$, we are now going to consider a general stationary Gaussian process Z(x) having a correlation function $\gamma(|x|)$ of the form

where $0 < a_1 < a_2 < \dots < a_N < \infty$ and $p_i \neq 0$ for any i. If all p_i are positive, the process Z(x) becomes T-positive. Our processes $Z_{h,i}(x)$ (i=1, 2 and 0) having those correlation functions (3-3), (3-3') and (3-3"), actually correspond to the infinite case $N = \infty$, but a full

discussion would need a lot of space. Hence in the present paper, we restrict ourselves to the finite case $N < \infty$ in which Z(x) turns out to be an N-ple Markov Gaussian process.

The purpose of the discussions below is to obtain a stochastic Ito-Volterra equation (3-1) of the KMO-Langevin type beyond that familiar framework of T-positivity. We impose a normalization condition like this:

(3-8')
$$\sum_{i=1}^{N} p_i = 1, \sum_{i=1}^{N} p_i a_i = \sigma^2 / 2 > 0, \text{ and } \sum_{i=1}^{N} p_i / a_i = \tau^2 > 0,$$

which yields $\gamma(0)=1$, $\frac{d}{dt}\gamma(0+)=-\sigma^2/2<0$, and $\int_0^\infty \gamma(t)dt=\tau^2>0$. As a direct consequence of (3-8'), we should observe that

$$E[(dZ(x))^{2}] = 2(\gamma(0) - \gamma(dx)) = \sigma^{2}dx + o(dx).$$

The spectral density function $\phi(\lambda)$ of Z(x) then becomes

(3-9)
$$\phi(\lambda) = \pi^{-1} \sum_{i=1}^{N} p_i a_i (\lambda^2 + a_i^2)^{-1},$$

which is expressible as

(3-9')
$$\phi(\lambda) = \sigma^2 h(\lambda^2) / 2\pi \prod_{i=1}^{N} (\lambda^2 + a_i^2),$$

with

$$h(x) = 2\sigma^{-2} \sum_{i=1}^{N} p_i a_i \prod_{\substack{j=1\\ j \neq i}}^{N} (x + a_j^2) = x^{N-1} + c_1 x^{N-2} + \dots + c_{N-1}$$

being a polynomial of degree N-1.

Now, our task is to prove this assertion (see Theorem 3 below): if the sequence $\{p_i\}_{i=1}^N$ satisfies the assumption (SC) stated in § 1, then the above polynomial h(x) has N-1 distinct roots $-b_j^2$ with $0 < b_1 < b_2 < \cdots < b_{N-1} < \infty$. This gives us another useful expression revealing the positiveness of $\phi(\lambda)$ for real λ :

(3-9")
$$\phi(\lambda) = \sigma^2 \prod_{j=1}^{N} (\lambda^2 + b_j^2) / 2\pi \prod_{i=1}^{N} (\lambda^2 + a_i^2).$$

In addition, when a seuence $\{a_i\}_{i=1}^N$ is regarded as fixed, the following relation combining two sequences $\{b_j\}_{j=1}^{N-1}$ and $\{p_i\}_{i=1}^N$ with $\sum_{i=1}^N p_i = 1$ is valid:

(3-10)
$$\prod_{j=1}^{N-1} (b_j^2 - a_i^2) = 2\sigma^{-2} a_i p_i \prod_{\substack{k=1 \ k \neq i}}^{N} (a_k^2 - a_i^2), \quad 1 \leq i \leq N.$$

It follows from (3-9") that the corresponding outer function $c(\lambda)$ such that $|c(\lambda)|^2 = 2\pi\phi(\lambda)$, takes the following form:

(3-11)
$$c(\lambda) = \sigma \prod_{j=1}^{N-1} (i\lambda + b_j) / \prod_{k=1}^{N} (i\lambda + a_k)$$

The decomposition (3-11) of a rational function $c(\lambda)$ in terms of its roots $\{ib_j\}_{j=1}^{N-1}$ and poles $\{ia_k\}_{k=1}^N$ then enables us to write

(3-11')
$$c(\lambda) = \sigma\{(i\lambda + q_0) + i\lambda \sum_{j=1}^{N-1} q_j(i\lambda + b_j)^{-1}\}^{-1},$$

and

(3-11")
$$c(\lambda) = \sigma \sum_{k=1}^{N} r_k (i\lambda + a_k)^{-1},$$

where we have

(3-12)
$$q_0 = \prod_{i=1}^{N} a_i / \prod_{j=1}^{N-1} b_j, \ q_j = -\prod_{i=1}^{N} (a_i - b_j) / b_j \prod_{\substack{k=1 \ k \neq j}}^{N-1} (b_k - b_j), \ 1 \le j \le N-1,$$

and

(3-12')
$$\eta_k = \prod_{\substack{j=1 \ j \neq k}}^{N-1} (b_j - a_k) / \prod_{\substack{\substack{i=1 \ i \neq k}}}^{N} (a_i - a_k), \quad 1 \leq k \leq N.$$

As is well known (see [15] \sim [17] and also [2], Chapter 5), such neat expressions (3-11) \sim (3-11") contain all information we need. In fact, the time evolution of Z(x) can be described by the KMO-Langevin equation (3-1), and we obtain the canonical representation

(3-13)
$$Z(x) = \int_{-\infty}^{x} \{ \sum_{i=1}^{N} r_i \exp[-a_i(x-y)] \} \sigma dW(y).$$

Furthermore, this expression (3-13) yields a relation combining two sequences $\{n_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$, which is given by

(3-14)
$$\sum_{k=1}^{N} r_{k} r_{k} / (a_{i} + a_{k}) = p_{i} \sigma^{-2}, \quad 1 \leq i \leq N.$$

Now we are ready to state and prove our main result, which includes the above-mentioned assertion for the polynomial h(x) in (3-9').

Theorem 3. (i) Suppose that a function $\gamma(t)$ of the form (3-8) satisfies the condition (SC) of sign changes of $\{p_i\}_{i=1}^N$ as well as the normalization condition (3-8'). Then $\gamma(|x-y|)$ is a correlation function of a certain stationary Gaussian process, which has a spectral density function of the form (3-9") with $0 < b_1 < b_2 < \cdots < b_{N-1} < \infty$ given by (3-10).

(ii) The stationary Gaussian process Z(x) arising in (i) admits the KMO-Langevin equation (3-1) and the canonical representation (3-13), where all coefficients required are given by (3-12) and (3-12').

<u>Proof.</u> It remains to prove (i). Putting $\lambda = i\sqrt{t}$, consider the function

$$\phi(t) = \pi \phi(i\sqrt{t}) = \sum_{i=1}^{N} p_i a_i (-t + a_i^2)^{-1} = \sigma^2 h(-t) / 2 \prod_{i=1}^{N} (-t + a_i^2), \quad 0 \le t < \infty.$$

Then we observe that

$$\phi(0) = \sum_{i=1}^{N} p_i a_i^{-1} = \tau^2 > 0, \quad \phi(a_i^2 \mp) = \pm (\text{sign } p_i) \infty, \quad i = 1, \dots, N,$$

and

$$\lim_{t\to\infty} t\phi(t) = -\lim_{t\to\infty} \sum_{i=1}^{N} p_i a_i \{1 + a_i^2 / (t - a_i^2)\} = -\sigma^2 / 2 < 0.$$

Here it should be noted that our convention $p_0 = p_{N+1} = -1$ mentioned in § 1 and corresponding to the ends $a_0 = 0$, $a_{N+1} = \infty$ of the interval $[0, \infty)$, turns out to be consistent with the above sign rule of $\phi(t)$ at every interior point a_i^2 .

Now, taking into account the sign changes of $\phi(t)$ on $[0, \infty)$, we can find at least one root in the i-th subinterval (a_i^2, a_{i+1}^2) if $p_i p_{i+1} > 0$, $i = 0, 1, \dots, N$. Our condition (SC) then tells us that the number $\#\{i; p_i p_{i+1} > 0\}$ is just equal to N-1 (=the degree of the polynomial h(x)) which concludes that $\phi(t)$ has exactly N-1 distinct roots b_j^2 , $1 \le j \le N-1$, and hence the expression (3-9") follows. We have thus completed the proof of Theorem 3.

Remark 2. From the expansions (3-3) \sim (3-3") of $\gamma_{h,i}(t)$, those stationary Gaussian processes $Z_{h,i}(x)$ (i=1, 2, 0) naturally possess their approximate processes $Z_{h,i}^{(N)}(x)$, $N=2, 3, \cdots$. That is, the correlation function $\gamma_{h,i}^{(N)}(t)$ of each $Z_{h,i}^{(N)}(x)$ is defined in the form (3-8) with

$$(3-15) \begin{cases} a_{j} = 4j - 2 - h, & p_{j} = 2^{1-h} \binom{h}{2j-1}, & 1 \leq j \leq N, & \text{for } i = 1, \\ a_{1} = h, & p_{1} = (2 - 2^{h-1})^{-1}, & a_{j} = 4(j-1) - h, & p_{j} = -(2 - 2^{h-1})^{-1} \binom{h}{2j-2}, & 2 \leq j \leq N, \\ a_{1} = h, & p_{1} = 2^{-1}, & a_{j} = 2(j-1) - h, & p_{j} = 2^{-1} (-1)^{j} \binom{h}{j-1}, & 2 \leq j \leq N, & \text{for } i = 0, \end{cases}$$

which satisfies the assumptions required in Theorem 3. For these processes $Z_{h,i}^{(N)}(x)$, we can therefore write the KMO-Langevin equations of the form (3-1) by using these coefficients $\{\sigma_{h,i}^{(N)},\ q_{0,h,i}^{(N)},\ q_{0,h,i}^{(N)},\ q_{0,h,i}^{(N)},\ b_{j,h,i}^{(N)},\ 1\leq j\leq N-1\}$. Then we wish to observe the asymptotic behavior of these coefficients as N goes to ∞ , which seems to be difficult. Here we only note the following result on $\{b_{j,h,i}^{(N)}\}_{j=1}^{N-1}$:

- (i) In the case 0 < h < 1: $a_j < b_{j,h,i}^{(N)} < a_{j+1}$ for all $j = 1, 2, \cdots$;
- (ii) In the case 1 < h < 2: $a_2 < b_{1, h, i}^{(N)} < a_3 \ (i = 1, 2), \ a_1 < b_{1, h, 0}^{(N)} < a_2,$ and $a_{j+1} < b_{i, h, i}^{(N)} < a_{j+2}$ for all $j = 2, 3, \cdots$.

Now, we come to the final topic. In the smallest case N=2, the condition (SC) covers all possibilities: 1) p_1 , $p_2>0$, 2) $p_1<0$, $p_2>0$, and 3) $p_1>0$, $p_2<0$, which imply that,

respectively, 1) $a_1 < b_1 < a_2$ with $q_1 > 0$, 2) $b_1 < a_1 < a_2$ with $q_1 < 0$, and 3) $a_1 < a_2 < b_1$ with $q_1 < 0$. In the next case N=3, however, there is one possibility $(p_1 > 0, p_2 < 0 \text{ and } p_3 > 0)$ that escapes from our restriction (SC).

<u>Proposition 4.</u> Suppose that a function $\gamma(t)$ of the form (3-8) with N=3, $p_1>0$, $p_3>0$ and $p_1+p_3>1$ satisfies the following inequality

(3-16)
$$\rho = \sum_{i=1}^{3} a_i^2 / 2 - \sum_{i=1}^{3} p_i a_i^3 / \sigma^2 > \sqrt{2} a_1 a_2 a_3 \tau / \sigma$$

as well as the condition (3-8'). Then $\gamma(|x-y|)$ is a correlation function having a spectral density function $\phi(\lambda)$ of the form (3-9"). Furthermore, we have

$$a_i < b_1 < b_2 < a_{i+1}$$
 if $a_i^2 < \rho < a_{i+1}^2$, $i = 0, 1, 2, 3 \ (a_0 = 0, a_4 = \infty)$.

Proof. The polynomial h(x) appeared in (3-9') is easily calculated as follows:

$$h(x) = x^2 + 2\rho x + 2(a_1 a_2 a_3 \tau / \sigma)^2$$

which has the discriminant $D = \rho^2 - 2(a_1 a_2 a_3 \tau / \sigma)^2 > 0$. We can therefore write

$$h(x) = (x+b_1^2)(x+b_2^2), b_i^2 = \rho + (-1)^i \sqrt{D}, j=1, 2.$$

Recalling the rule of sign changes described in the proof of Theorem 3, we see that the roots b_1^2 , b_2^2 of $\phi(t)$, as well as their middle point ρ , lie in the same interval (a_i^2, a_{i+1}^2) under the present conditions. This completes the proof of Proposition 4.

References

- [1] Dym H. and McKean H.P.: Gaussian process, function theory and the inverse spectral problem. Academic Press, 1976.
- [2] Hida T. and Hitsuda M.: Gaussian processes. Amer. Math. Soc., 1993.
- [3] Lévy P.: Processus stochastiques et mouvement brownien. Gauthier-Villars, 1948 (Second edition 1965).
- [4] Lévy P.: Random functions: General theory with special reference to Laplacian random functions. *Univ. of California Publications in Statistics* I, 12: 331-390, 1953.
- [5] Lévy P.: Sur la dérivation et l'intégration généralisées. Bull. Sci. Math. France (2) 47: 307-320, 1923.
- [6] Lifshits M.A.: Gaussian random functions. Kluwer Academic Publishers, 1995.
- [7] Mandelbrot B.B.: The fractal geometry of nature. W.H.Freeman and Company, 1982.
- [8] Mandelbrot B.B. and van Ness J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Review 10: 422-437, 1968.
- [9] Molchan G.M. and Golosov Ju.I.: Gaussian stationary processes with asymptotic power spectrum. Soviet Math. Dokl. 10: 134-137, 1969.

浜松医科大学紀要 一般教育 第10号 (1996)

- [10] Muraoka H.: A fractional Brownian motion and the canonical representations of its coefficient processes. Soochow J. of Math. 18: 361-377, 1992.
- [11] Noda A.: Lévy's Brownian and stochastic variational equation. *Gaussian random fields*. (editors: Ito K. and Hida T.) World Scientific: 309-319, 1991.
- [12] Noda A.: Some double Markov Gaussian processes. Reports of Liberal Arts, Hamamatsu Univ. School of Medicine 6: 25-35, 1992.
- [13] Noda A.: Some multiple Markov Gaussian processes with stationary increments. Reports of Liberal Arts, Hamamatsu Univ. School of Medicine 7: 31-43, 1993.
- [14] Noda A.: Some periodic Gaussian processes and the quasi-Markov property on the circle. Reports of Liberal Arts, Hamamatsu Univ. School of Medicine 8: 47-59, 1994.
- [15] Okabe Y.: On a stochastic differential equation for a stationary Gaussian process with T-positivity and the fluctuation-dissipation theorem. J. Fac. Sci. Univ. of Tokyo, Sect.IA, 28: 169-213, 1981.
- [16] Okabe Y.: On KMO-Langevin equations for stationary Gaussian processes with T-positivity. J. Fac. Sci., Univ. of Tokyo, Sect. IA, 33: 1-56, 1986.
- [17] Okabe Y.: Langevin equation and causal analysis. Suugaku 43: 322-346, 1991 (in Japanese).
- [18] Singer P.: An integrated fractional Fourier transform. J. Comput. Appl. Math. 54: 221-237, 1994.
- [19] Yosida K.: Lectures on differential and integral equations. Dover Publications, 1991.

Received on December 21, 1995.

Accepted on January 12, 1996.