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Abstract: From a standpoint of the stochastic Ito-Volterra equation and the canonical repre-
sentation of Gaussian processes ([13] and [2]), we investigate self-similar processes derived
from fractional Brownian motions ([10]). In particular, we generalize a key property of
T-positivity that was assumed in Okabe’s theory for stationary Gaussian processes ([15]~

[171).
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§ 1. Introduction

The present paper is, in some sense, a continuation of the author’s previous papers
[11]1~[14]. As was mentioned in Introduction of [13], a fractional Brownian motion
B,(t) with exponent 2# 1, 0<h <2, has these important properties:

(i) Gaussian in distribution; (ii) self-similarity; (iii) stationarity of the increments;
(iv) the fractional nature (dt)" of the variance of the infinitesimal increment
dBy(t) =By (t+dt)—By(¢). This last property refuses one to apply a familiar stochastic

Ito-Volterra equation of the form
t
(1-1) a¥() = ([ k(t1)aY () dt+0dBo(D),

where Bo(#) is a standard Brownian motion that expresses the innovation process of a
Gaussian process Y(£), £=0.

Keeping such a fractional nature of Bx(#) in mind, we here deal with two.self-similar
Gaussian processes Xy, 1(£) and Xj, 2(¢), which express the odd and even parts of the frac-

tional Brownian motion, respectively. Their canonical representations were obtained in
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[10]: »
15
(1-2) X i(8) = Cy J»th,i(t/u)u(hfl)/deo(u>,
where we see that the kernel f;,:(s) ~ (s*—1)® V% as s=t/ull. In order to grasp the
main term o dBy(¢) in a stochastic equation like (1-1) for such processes, we are naturally

led to operate the fractional derivative D, of order a=(h—1)/2, to study new processes

Y i(t) =Dy X, «(t) in §2. Then we get
(1-3) Y i(8) = Ch [y gn it/ u)dBo(w0) .
with a finite positive value g, :(1).

This canonical representation (1-3) of the transformed process Y, :(f) enables us to write

(1-4) 4%, (O = 4= [ ju it/ w0u B di+on dBo(D), 10,

with positive constant 6,=Crgn:(1) and jh,i(S)Z—ChEds—gh,i(s) (Proposition 1).

Associated with (1-4), we need consider the resolvent equation for the Volterra kernel
r(t,u) =g i(t/w) (o) ™",
14
(1-5) K +rw = [ 1ok wdn, 0<u<t.

Whenever we find a solution k(¢ u) of this integral equation, we can reach our goal in § 2,
i.e., the following stochastic Ito-Volterra equation that is shown to be equivalent to (1-4)

above (cf. [2], Chapter 6):
(1-1) dY;,,i(t)={I;k(t,u)th,i(u)}dt+atho(t), £>0.

Indeed, we are going to prove the existence of such a solution k(£ u) of (1-5) in the sim-

plest case 0<<2 <1 and i=1 (Theorem 2). Since the kernel (¢, %) does not satisfy a famil-

iar L’-integrability condition
IZ{I;rz(t,u)du}dt< oo for any T >0,
we follow our approach taken in [11]. Namely, we show the following inequality instead:
(1-6) , Jt)lr(t,u)ldu<1 for any ¢>0.

Then we easily find a desired solution (¢, 1) in the L™ -space, by means of a well-known ex-

pansion
(1-7) k(tu)=— élr(")(t,u),
r™(t,u), n=1, 2, -+-, being the iterated kernels of (¢, %) ([19]).
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In §3, we take up another approach toward a KMO-Langevin equation describing the
fractional Brownian motion. By a well-known change of parameter, any self-similar
Gaussian process can be transformed into a stationary Gaussian process. Stationary proc-
esses Zn (), xER, thus transformed from X, ;(¢), t=0, turn out to have a notable
structure of their spectral density functions. With this observation in mind, we are going
to discuss a generalization of T-positivity (=reflection positivity =0S positivity, also used
as a terminology).

In fact, we investigate a KMO-Langevin equation for a general multiple Markov station-

ary Gaussian process Z(z) having a correlation function y(|z—y|) expressible as follows:
N
(1-8) r(t)= Elpiexp[~ait], t=0,

with 0< @1 < a,< +++ <ay< o, and p;#0 for every i. Let {Ui(x)}:¥, be a sequence of mu-
tually independent Ornstein-Uhlenbeck processes with correlation functions expl—a;lz—yl],
1<{<N. Then our process Z(z), independent of all U;(z) such that p;<0, satisfies the

following equality in distribution:

(1-9) 2()+ % Jmax {2, 0) Ui(x) = ¥ ymax (5, 0} Ui2).

N
In case p; >0 for all i, the process Z(z) = Z}l Jp; Us(x) becomes T-positive, for which the

author has discussed the KM:O-Langevin equation in [12] and [13].

Now we are ready to state our assumptions. In addition to the usual condition
(1-8") r@=1, L704)=-0%/2<0,and [ r(ar=7>0,

we impose more general condition than that of T-positivity:

(8C) The number S(po, P, ***, Pn, Pw+1) of sign changes of the extended sequence

{p:32 is equal to 2,

where we always set po=pn+1= —1 in the present paper. A good example including nega-
tive p; and satisfying (SC) comes from a suitable approximation to Z (x), 1<h<2,
mentioned above. On the other hand, for 0< s <1, each stationary process Z, (z) turns
out to be T-positive (see Remark 2).

Under the present assumption of (SC), which contains the case of T-positivity, we are

going to study the spectral density function
oo N
(1-10) s = [ explirelr(|zDdz, 2n= % prar/n (2 +ab),

and find its N—1 distinct roots {ib;}}-1 with 0< b5 < by< +-+ < by_1< 0. In view of the
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roots {ib;}}=1" and the poles {iax}«Y; of ¢(1) distributed on the positive imaginary axis,
the associated outer function ¢(1) is concluded to admit three different expressions:
N-1 N N .
c(D=o '1;11 (ix+b) ./ kI:II(M +ar) = ok§1 n(id +ay)
(1-11) ’ o
=o{(ii+g) +il T g;(iA+b) 4L
2

By these neat expressions (1-11), we are able to proceed on the lines of Okabe’s theory
([15]~117]), to establish the canonical representation of Z(z) and the KMO-Langevin
equation describing the time evolution of Z(z) (Theorem 3).

The final topic (Proposition 4) is to discuss in detail the particular case N=3 without the
above restriction (SC). Namely, when p1>0, p»<0 and ps>0 (which means that
S(po, p1, "+, ps) =4), we take up a sufficient condition that still guarantees the validity

of (1-11). In the general N case, however, such an attempt would cause us difficulties.

§ 2. Fractional Brownian motion and fractional calculus

This section is devoted to a study of stochastic Ito-Volterra equations for self-similar
Gaussian processes which are derived from the fractional Brownian motion Bx(#) by using
fractional calculus. In order to find a stochastic equation for Bx(¢), the main difficulty
comes from that fractional nature E[(dBy(2))*] = (dt)" mentioned in § 1. We therefore
use the fractional derivative D, of order a=(h—1),2, and define a new process Y(#)
having this nice property:

(2-1) ELdY()) =0%dt+o(dt) (¢>0),
which is expected to provide us with a stochastic Ito-Volterra equation of Y(#) in terms of
a standard Brownian motion By(¢).

Let By(z), —co<zx< oo, denote a fractional Brownian motion with exponent A#1,
0<h<2 ([7] and [8]). That is, Bx(z) is a centered Gaussian process such that its covari-
ance function I, (z, y) is given by

(2-2) iz, ={lzI"+lyl'~lz—yl"} /2, —oo<z y<oo.
We here study two self-similar Gaussian processes X, :(¢) on [0, o), which are derived
from B,(z) in the following way:
{Xh,m:{Bhu)—Bh(—z)}/ﬁ, 120,

(2-3)
Xno(8) = {Bu() +Bu(— 1)} /Y2, t=0.
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This pair of processes corresponds to the odd and even parts of the original process
By(x), and we see that X,, ((#) and X}, 2(#) are mutually independent. The covariance func-
tion of X, (¢) becomes

D1t ) ={(t+)"—~(—s)} 2, | 0<s=t¢,
{1‘,,,2(;,‘, ) ="+ = {(t+)"+ (=) ,72, 0=s=y

(2-4)

and we calculate the variance of the infinitesimal increment dX, ;(¢) for every £>0:

(25) E[(dXs ()% = (d)— (—1)2" {(t+dt)' +t"—2(t+dt/2)"}
=(@)"+od)d, i=1, 2
As was stated in § 1, we know the canonical representation of Xj,:(¢):
1
(2-6) X, () =Cs fo.fiz,i(t/u)u<h71)/2dBo(u), t=0,

where Ch= (Wz b/ T((h+1)/2DT(1—h,/2))* and the kernel function fi,(s), s=1,
takes the following form ([10]):

foi(s)=(s2= D)2
(2‘7) {' S
fino(s) = (s2— 1P D214 I](uz—l)q‘*l)/z u?du.

Now we introduce the fractional derivative D, of order a=(h—1)/2, to define new
Gaussian processes

(2-8) Y i(8) = DX (8, £>0.
The explicit form of D, is given in terms of the fractional integral Iz of the Holmgren-
Riemann-Liouville type ([5]):

(29) U$)(D=1 gy [ G—wP Bwadu. >0,
Indeed, we have, for 0<A <1,

(2-10) %) = (L-aXo ) (O =S i 73y J ot X,

and for 1<h<2,

Yo i(8) =% (=X, ) (O

1 __d
r((8—h),2) dt

By (2-6) and (2-10), for 0<A<1 we can write

(2-10) ,
[ =025, (W du).

pr=1.2

%D =Co [ ey 7y J 0 i/ v)dud dBa(w).

Then, putting p=(u—v),/(¢—v)E (0, 1) and s=¢v& (1, =), the above integral in
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{ | becomes

(h—1),2
m(t—v)“*h)ﬂf;(l—p)f("“)/th,i(l—p+pt/v)dp

-1 (A—=h),2 1 _
- Igz(ljh)/Z) IO(I‘P)' wH02e (1—p+ps)dp,
which we denote simply by gn, :(s).
By (2-7), we compute gr, :(s) as follows:

g () = [ (Q2—p+p9)pY " D721 p) P ap /T (1) /2)

@10 g, ()= [ 12—p+290p}" 1 —pps) (A=) **" 2ap,/T((1~ 1))

1
(5D [ (@409} 21 =ptp9) (A=) p /TG =),/ D).
We thus arrive at the following canonical representation of ¥,:(t) in the first case
0<h<1:

(2-12) %0 =Ci [ an it/ 0 dBoCw)

Here, the kernal function g, ;(s) was given by (2-11).
We can similarly proceed to the canonical representation of ¥, :(#) in the second case

1<h<2. By (2-6) and (2-10’), we are led to set
1
g (s) :m %[(8—1)(37")/2.{0(1 —p) % (1—p+ps)dp],

and we obtain (2-12) also in this case. The exat form of the kernel g, :(s) follows easily

from (2-7):

g 1(9) = [ 1224 )P (=) 4O 2dp /T ((3—),/D)

1
_(s_1)J’O(z__p+ps)(hA3)/2p(h+1)/2(l__p)(lfh)/de/F((l_h)/Z)’
(2-117) : 1
g o() = [ (A+p(s—D* A {2—p+ps)p(1—p) 407
. ‘

(1-p+9)dp/T((3~1) /2) — (s— 1) [ (2= p+ps)* P/ 3prio2

(1)U —p+ps) 'dp/T((1~h) /2.

Now, we are in a position to derive stochastic equations for our self-similar processes
Y, :(#), i=1, 2. Noting that the two expressions (2-11) and (2-11°) yield the same value
g1 (D =gs, (1) =2""PT((h+1)/2), we can set

0n=Cngn (1) =" Wz hT((h+1),/2) /T(A~h,/2))"*

(2-13)
= (2"sin(zh,/ 2T ((h+1) /DT (h/2+1) Yz )*>0.
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Then the canonical representation (2-12) enables us to write
t
(2-14) d%, (D= (= [ jniCt/w0u"aBo(w} dt+0rdBo(), 130,
where we put
. d
Jni(s) = ~ Ci g 9m (s), s>1.

The explicit forms of f(s) follow immediately from (2-11) and (2-11°), although we do
not go into details here.

We can summerize the above discussions as follows:
Proposition 1. The self-similar Gaussian process Y, :(2) defined by (2-8) admits the ca-
nonical representation (2-12) as well as the expression (2-14) for the infinitesimal incre-

ment d ¥, ;(¢).

We are ready to face the main problem in this section. Under some condition that guar-

antees the existence of a solution of the resolvent equation

(2-15) kGt )+ (/0 (on) " = [ it/ 0) (on) o, Wi,

for every 0<u < ¢, we reach the following stochastic [to-Volterra equation as an equivalent

equation to {2-14) above:
14
(2-16) a0 (D)= ([ k(t, W)d¥, O} dt+0,dBy(D), 10,

where the kernel k(¢ u) is taken to be a soluion of (2-15).
In the present paper, we must be contented with finding a solution of (2-15) only in the

case 0<h <1 and i=1; The remaining cases as well as the multiparameter cases studied in

[10] are planned to be discussed in a forthcoming paper.

In the case 0< 2 <1, we obtain
Jwa(s) = {ch(l—h)/2r<(17h)/2)}ﬂ(2—p+ps)‘”*3>/2{p(1—p)*‘}"’“)”dp
= onds | 2 p+p) " A p(1=p) N4 2ap >0,
which is decreasing with }Lrg Jw1(s) =0. Here we simply set

dp=[22°sin w2l js=a-m, 2.

In order to show a key estimate (1-6) in § 1 for this continuous kernel

(2-17) r(t, w)=jn 1(t/w) (oru) ™' = — Cy(on u)”“j;gh, 1(8) 5=/,
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we observe that gs, 1(s) is positive and decreasing with lim g, 1(s) =0. Then we have

Lrlr(t u)ldu———j1 r(1, wydu=—C U’IJW{L (s)}s s
0 ’ 0 ’ b Ch 1 dsgh’l

—1- (g7 gu (s s <1,

which implies that an operator 7; defined by
L
(2-18) (TH®O= [ 76, WeGdu for any L0, =),

is a contraction operator on L*((0, =)). Hence the resolvent equation (2-15) can be
solved in a familiar manner (cf. [11] and [19]). Namely, we get the following for each

(¢, ) such that 0<u<t¢:
(2-19) K == T, W=~ T r@( ),

with 7@ =¢(t, u)and for n=2,

r w)y=J--J r(t, v)r(yy, vo) - r(vn-1, u)AVs-1>*+dvL.

2-20)
( ) {lu<v,1< <<t}

We have thus proved the main result in this section.

Theorem 2. The self-similar Gaussian process Y, :(#) with exponent 0<<2 <1, admits the
stochastic Ito-Volterra equation (2-16) with kernel k(t, u)=— Z}lr(")(t, u), where

r™ (¢, u) are the iterated kernels of (2-17).

§ 3. Generalization of T-positivity and KMO-Langevin equation

In this section we transform those self-similar processes X, :(£), £=0, into stationary
processes Zy :(x), TER, to see a notable structure of their spectral density functions,
which leads us to investigate a generalization of T-positivity. The KMO-Langevin equation

for each N-ple Markov stationary Gaussian process Z(x) discussed here takes this form:
T N—-1
(3-1) dZ(zx) =0dW(zx)—dz(gqe Z(2)+ f {(Z g expl—b;(x—y)1}dZ(y)],
—e S

where 0, o >0, 0<b;< << by <0, ¢;#0, and W(x), xER, is a Wiener process
(standard Brownian motion on R). Under the assumption of T-positivity (cf. [16]~[17],
and also [2]), we have ¢; >0 for all j=1, 2,---,N—1. In the present paper, however, we
would rather be interested in stationary processes that are not T-positive but satisfy the as-
sumption (SC) stated in § 1, for which g;< 0 holds for some j. In the case 1<h <2, the ap-

proximate processes Zry (z), N=2, 3, -+-, discussed in Remark 2 constitute a good
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example of such processes.

Let us begin with studying a couple of stationary Gaussian processes that are related to
the fractional Brownian motion. From the self-similar process Xj, :(¢) defined in the pre-
vious section, we change parameter to define a stationary Gaussian process

(3-2) Zyi(z) =e "X, (™) /YIn (1, 1), zER,
and calculate its correlation function
7w i(|2) =E[Zy () Zy, (0)] =2 " T}, (e® 1),/ Ty 1, 1)
Explicitly we get, for t =0,
7w 1(¢) = (cosh t)*— (sinh ¢)"

(3-3) i ;
=2' Mhrexpl—(2-m)t]l+ T(exp[—j+2—m)tl},
and
71 2(1) = (27—~ 1)71{2%" cosh (ht) — (cosh ¢)"— (sinh )%}
(3-3")

=(2-2""Y Yexp[ —ht]— ji(zhj)exp[— (45—n)t1}.

Note that in the above expansions, both (#+) >0 and () <0 hold for 0<h<1 and
j=1, 2, -+, which tells us that the processes Z; () and Z, .(x) are both T-positive when
0<Ah<1. On the other hand, when 0< /<2, we have the opposite inequalities for all 7.

The spectral density function ¢4 :(1) and the canonical representation of Z,, ;(z) were ob-
tained in [10]:

¢ 1 (1) =" ') HRQ-RD P+ (2—m)D
(3-4) AP ACICER Sl SNCTE RPN
=r(2"’D) | B(GA+2-h) /4, (h+1),/2)P/BU(h+1) /2, 1—=h/2)
and
Bn () = (22" D} H{r(A+rD) '~ ji(z‘hj) W—h) X+ -7
(3-4) =n{@"=2"") 7} X+ (h+2)DXP+hD !
|BGiA+4—R)./4, (h+1)/D*/B((h+1),/2 1-h/2),
B(p, q) being the beta function. The canonical representation is then written in the form

(3-5) Zy,i(x) = Cp(Th, (1, 1)) 772 iw Foi(z—1dW(y),

and the canonical kernel Fy, (t), £>0, is expressible as follows:
F, () =expl—(2—h)t]1{1— exp[_4ﬂ}(h—1)/z

3-6 -
36 = ("D (= Dlexpl-(k+2-n)t],
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and
Fu () = expl— (4—h)t] {1— exp[— 41}~ P2

3-6 t
(3-6") +2 exp[—ht]‘[oexp[—(zt-Zh)u] (1— expl—4u1}* P %4y,

Remark 1. It deserves to mention that the self-similar process

(3-7) X, o(2) = {Xh,l(t>+Xh,2(t)}/‘/§, t=0
and the associated stationary process
(3-2%) Zn o(x) =e "X, o(e*), xER

have the same characters as X :(¢) and Zj,;(x) ‘(i=1, 2), respectively.  This process
X o(2) is nothing but the restriction of parameter of B,(x), and its canonical representa-
tion was studied in [9] (see also [11]). Here it should be noted that the correlation func-
tion 74, o(|z—y|) of Zso(x) is given by

71 o(t) = (cosh ht) —2" ' (sinh )"

(3-3”) . © 4 )
=2 {exp[—ht]— El(j)(—l)Jexp[~(2]~h)t]},
which is T-positive when 0<h <1, but not so when 1<k <2. In addition, we have
(3-5") Zu (@) =24 h=11C, [ Fiolz-9)dW(y),
and the canonical kernel Fj, o(x) takes the analogous form to (3-6): for 0< A <1,
Fh,o(t):e*’”{f‘;_mu*h(l—u)<"*3>/2du+3(1~h, (h+1),/2)}
=B(1—h, (h+1)/2)exp[—ht]_2}(("}3)1/2)(vl)j(]'*h)_lexp[—(2]'—h)t],
and for 1<h<2,

1
e

Fo(t) =ef"‘J‘ » ur(1—u) " 2y

Inspired by these results on the processes Zj:(x) (i=0, 1, 2) that are transformed
from a single fractional Brownian motion B,(x), we are now going to consider a general
stationary Gaussian process Z(z) having a correlation function y(|z|) of the form

N
(3-8) r(t)= ,;1 piexpl—ait], t=0,
where 0<g;<@;<--<agy<o and p;#0 for any 7. If all p; are positive, the process
Z(x) becomes T-positive. Our processes Zp,:(x) (i=1, 2 and 0) having those correlation

functions (3-3), (3-3’) and (3-3”), actually correspond to the infinite case N =0, but a full
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discussion would need a lot of space. Hence in the present paper, we restrict ourselves to the
finite case N < oo in which Z(z) turns out to be an N-ple Markov Gaussian process.

The purpose of the discussions below is to obtain a stochastic Ito-Volterra equation (3-1)
of the KMO-Langevin type beyond that familiar framework of T-positivity. We impose a

normalization condition like this:
N N N
(3-8) g} pi=1, ;piai=02/2>0, and _lei/ai:rz>0,

a

ey 7(0+)=—0%/2<0, and IO r()dt=12>0. As a direct conse-

which yields y(0) =1
quence of (3-8”), we should observe that
EL(dZ(x))"]=2(y(0) —7(dx)) = o’dz+o(dx).

The spectral density function ¢(2) of Z(x) then becomes

(3:9) B =77 T pra(X+a),
which is expressible as

(39) p0 =0 h(®) /2 1 (R+asd),
with

N N
h(l’) :20‘2 ‘Zl pl a; _Hl(x+aj2) =x”“+clx”’2+--- +CN71
= J=1

it
being a polynomial of degree N—1.

Now, our task is to prove this assertion (see Theorem 3 below): if the sequence {p:}:":
satisfies the assumption (SC) stated in § 1, then the above polynomial 2(x) has N—1 dis-
tinct roots —b;” with 0<b;< by< -+ < by—1< oo, This gives us another useful expression

revealing the positiveness of ¢(1) for real A:
N 2 2 N 2
(3-97) $(1)=0o* 'Hl(l +b; )/27[}1'[1(& +a;?).
= i=
In addition, when a seuence {a:};¥ is regarded as fixed, the following relation combining

N
two sequences {6171 and {p:}:Y; with Z}l pi=1 is valid:

N—1 N
(3-10) ,Hl(b,-z—aﬂ):20*2aip,-knl(ak2—a,-2), 1<{<N.
s &

k+i
It follows from (3-9”) that the corresponding outer function ¢(1) such that |c(A) |*=2z¢ (1),

takes the following form:

(3-11) () =0 T (iA+5)./ T (2 +ay)
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The decomposition (3-11) of a rational function ¢(1) in terms of its roots {ib;};~; and

poles {iax}dL: then enables us to write

N—1
(3-117) c(A) =0o{(ir+qp) +iA b3 a@;GiA+b;)" ",
=
and
¥ -1
(8-117) c(}g)zok‘él n(id+ar) ™',
where we have
N N—1 N N—1
(3-12) @= 1T a/ 1 b, ¢=— I (a:=b)/b; I (5—b), 1SjSN—1,
k#j
and
N—1 N
(3‘12,) %= Hl(bj—ak)/ 'Hl(ai—ak), 1=k=<N.
i= i=
i*k

As is well known (see [15]~[17] and also [2], Chapter 5), such neat expressions (3-
11)~(3-11”) contain all information we need. In fact, the time evolution of Z(z) can be

described by the KMO-Langevin equation (3-1), and we obtain the canonical representation
(3-13) z@=[" (S nesol-az-pNodW ().
Furthermore, this expression (3-13) yields a relation combining two sequences {#};¥; and
{p:};"1, which is given by
(3-14) | é nn/ (ata) =piol 1<i<N.

Now we are ready to state and prove our main result, which includes the above-mentioned
assertion for the polynomial A(z) in (3-9°).
Theorem 3. (i) Suppose that a function 7(¢) of the form (3-8) satisfies the condition (SC)
of sign changes of {p:};¥; as well as the normalization condition (3-8’). Then 7(|z—yl)
1s a correlation function of a certain stationary Gaussian process, which has a spectral den-
sity function of the form (3-9”) with 0<b; < by< -+ < by_; < o0 given by (3-10).
(ii) The stationary Gaussian process Z(x) arising in (i) admits the KMO-Langevin equa-
tion (3-1) and the canonical representation (3-13), where all coefficients required are given

by (3-12) and (3-12’).

Proof. It remains to prove (i). Putting A =iy , consider the function

(b(t):ml)(i\/t_): élpiai(—ﬁ‘aiz)ﬂ:Uzh(‘t)/Z ,ﬁl('t+ai2>, 0=t<Coo,
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Then we observe that

N
$(0)= X piai'=7">0, ¢(a’F)=E(sign p)oo, i=1, -, N,

and
N
lim tp(8) = —lim X piai{l+a’/ (t—a} = —0?/2<0.
Here it should be noted that our convention p¢=pwy+1= —1 mentioned in §1 and corre-

sponding to the ends @y=0, ay+; = of the interval [0, o), turns out to be consistent
with the above sign rule of ¢(#) at every interior point a;®.

Now, taking into account the sign changes of ¢(¢) on [0, o), we can find at least one
root in the i-th subinterval (@2 a21) if pipis:1>0, i=0, 1, ---, N. Our condition (SC)
then tells us that the number #{i; p:pi+1>0} is just equal to N—1 (=the degree of the
polynomial A(x)) which concludes that ¢(¢) has exactly N—1 distinct roots b&;",
1<7=<N—1, and hence the expression (3-9”) follows. We have thus completed the proof of

Theorem 3.

Remark 2. From the expansions (3-3) ~(8-8”) of 74, :(¢) , those stationary Gaussian processes
Zni(x)(i=1, 2, 0) naturally possess their approximate processes Zsxy' (z), N=2, 3, --.
That is, the correlation function 7% (¢) of each ZyY (z) is defined in the form (3-8) with

a;i=4j—2—h, p;=2""(41), 1<j<N, fori=1,

ai=h, p1=02-2"D7" g;=4G-D—h, p=—-02-2"D7'(Go), 255N,

(3-15) ‘
for i=2,

ai=h, p1=27Y a;=2G-1)—h, p;=2"'(—1Y("), 2<j<N, fori=0,
which satisfies the assumptions required in Theorem 3. For these processes Zh(lzv (z) , We can
therefore write the KMO-Langevin equations of the form (3-1) by using these coefficients

W W, b; Y, 1=j<N—1}. Then we wish to observe the asymptotic behavior

{0}5,]\?, qo,
of these coefficients as N goes to o0, which seems to be difficult. Here we only note the fol-
lowing result on {b; %"
(i) Inthe case 0<h<1: a;<b;¥i<a; for all j=1, 2, *;
(ii) In the case 1<h<2: a:<b¥:<as (i=1, 2), a1<b, o< ay,
and a; 11 < b;Yi<aj+2 forall j=2, 3, ---.
Now, we come to the final topic. In the smallest case N=2, the condition (SC) covers all

possibilities: 1) py, p2>0, 2) p1<0, p2>0, and 3) p1>0, p2<0, which imply that,
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respectively, 1) a1 < b;<as with ¢; >0, 2) b, <a;<a; with ¢:<0, and 3) a:<a»< b; with
q:<0. In the next case N=3, however, there is one possibility (p:>0, p.<0 and ps>0)
that escapes from our restriction (SC).

Proposition 4. Suppose that a function 7(¢) of the form (3-8) with N=3, p:>0, ps>0

and p,+ps;>1 satisfies the following inequality
3 3
(3-16) p=Xa’/ 2= L pi a®/*>y2ai1azast/ 0

as well as the condition (3-8’). Then y(|xz—y!) is a correlation function having a spectral
density function ¢(2) of the form (3-9”). Furthermore, we have
a:;< b <by<aj if ai2<,o<ai31, i=0,1, 2, 3 (QOZO; as= Oo)

Proof. The polynomial #(z) appeared in (3-9’) is easily calculated as follows:
h(z) =x2+2px+2(a1azas1.0)%,
which has the discriminant D=p?—2(a;a:a57,”/0)*>0. We can therefore write
h(z)=(z+bD(x+bD), bi=p+(—1WD, j=1, 2.
Recalling the rule of sign changes described in the proof of Theorem 3, we see that the roots
b, by of ¢(t), as well as their middle point o, lie in the same interval (a:?,a;%1) under the

present conditions. This completes the proof of Proposition 4.
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