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Insect eggs store many lipid droplets as an energy source for embryonic development. We previ-

ously reported that lipid droplets are incorporated into embryos in three steps in the silkworm, 

Bombyx mori. The midgut plays important roles in lipid incorporation during the second and third 

steps, whereas the manner of lipid incorporation during the first step is still unknown. In this study, 

we focused on how lipids were incorporated into the embryo in the first step, compared with the 

mechanisms used in the second step, by means of transmission electron microscopy using the 

high-pressure freezing and freeze substitution method. At the beginning of the first step (blasto-

derm formation stage), some lipid droplets were observed in each cell of the embryonic tissues. 

Lipid droplets were seen to be derived from the oocyte peripheral cytoplasm by superficial cle-

avage. At the end of the first step (late appendage formation stage), some lipid droplets were 

attached to the elongated rough endoplasmic reticulum (rER). It seemed that formation of the lipid 

droplets occurred in embryonic cells at the end of the first step, because the rER is the site of bio-

genesis of lipid droplets. The incorporation of lipid droplets in the first step may be subdivided into 

two stages: the blastoderm formation stage and the subsequent stage before blastokinesis.
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INTRODUCTION

In insects, a large amount of nutrients, such as yolk 

granules, glycogen granules, and lipid droplets, are stored in 

the egg. Yolk granules are hydrolyzed and then used as a 

protein source during embryonic development. Lipid drop-

lets and glycogen granules are used as energy sources dur-

ing embryonic development; in particular, lipid droplets are 

digested mainly in the last stage of embryonic development 

(Beenakkers et al., 1981). The eggs of the silkworm, Bombyx 
mori, which contain many lipid droplets and glycogen gran-

ules, are suitable for studying the energy supply during 

embryonic development. We recently reported that lipid 

droplets are incorporated into embryonic tissues in three 

steps during embryonic development in B. mori (Yamahama 

et al., 2008). Small amounts of lipid droplets are incorpo-

rated into embryonic tissues before blastokinesis (first step), 

half the lipid droplets in the extraembryonic yolk are incor-

porated into the embryo by dorsal closure during blasto-

kinesis (second step), and the remaining half are eaten by 

the developing caterpillar before head pigmentation (third 

step). We supposed that lipid is incorporated in the first step 

in a different manner than in the other steps, in which lipid 

incorporation is mediated by the midgut. To determine the 

mechanism of lipid incorporation during the first step, we 

made ultrastructural observations.

Miya et al. (1972) and Miya (1976, 2003) previously 

examined B. mori eggs by transmission electron microscopy 

(TEM), but there have been few recent reports of ultrastruc-

tural studies. The mature eggs of B. mori are especially dif-

ficult to prepare for TEM. Structural changes readily occur, 

because the cytoplasmic components are easily disordered 

when the lipid droplets that occupy the large part of the 

cytoplasm are removed during conventional dehydration 

processes. We recently applied high-pressure freezing com-

bined with freeze substitution to the preparation of mature 

eggs of B. mori for TEM observation, achieving results suit-

able for the observation of fine structures such as lipid drop-

lets and glycogen granules (Yamahama, 2008). We also 

used these methods to determine how lipid droplets are 

incorporated into embryonic tissues in the first step as com-

pared with the second step.
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MATERIALS AND METHODS

Animals

Non-diapause eggs of a bivoltine race (Daizo, NIAS Stock 

No.338) of the silkworm, B. mori, were prepared using a previously 

described method (Yamahama et al., 2008). All of the eggs were 

collected within 1 hr after oviposition, and were kept in dark condi-

tions at 25°C until hatching. The larvae hatched out on the 9th day 

after oviposition under these experimental conditions. The develop-

mental stages of the embryos were defined morphologically by 

referring to Ohtsuki (1979), Yamashita and Yaginuma (1991), and 

Singh et al. (2002).

We divided the embryos into four groups, as shown in Fig. 1. 

The chorion was removed in Graces’s insect culture medium 

(Daigo, Nippon Seiyaku Co., Japan) by using a fine needle (27G×3/4; 

Terumo Co., Japan) under a dissection microscope, just before 

applying high-pressure freezing.

Preparation of specimens for electron microscopy by using 

high-pressure freezing combined with freeze substitution

Specimens were frozen in a high-pressure freezer (EM-PACT; 

Leica, Germany) using a processed flat carrier, as previously 

reported (Yamahama, 2008). Briefly, the hollow of a commercially 

available flat carrier (Leica, Germany) was additionally processed 

with a milling machine (Mr. Mister FV-10M; Toyo Associates, 

Japan) to a size of 1.2 mm in diameter and 375 μm in depth to fit 

an egg. A dechorionated egg was then gently placed in the hollow 

of the carrier and immediately frozen in the high-pressure freezer. 

Freeze substitution was performed by using a freeze substitution 

freezer (EM-AFS2; Leica, Germany). Frozen-eggs were transferred 

into substitution solution (1% osmium tetroxide in 100% acetone) 

below –90°C, and the substitutions were then performed automati-

cally. After being rinsed with acetone at room temperature, speci-

mens were substituted with Quetol 812 (Nissin EM, Japan) resin. 

Ultrathin sections were made with an ultramicrotome (UCT; Leica, 

Germany), picked up on a copper grid covered with collodion film, 

stained with 2% uranyl acetate for 5 min followed by 3 min in lead 

stain solution (Sigma-Aldrich, USA), and observed by transmission 

electron microscopy (JEM-1220; JEOL, Japan); digital images were 

captured with an attached cooled CCD camera (Gatan, USA).

RESULTS

Transmission electron micrographs of embryonic cells of 

B. mori during the first step are shown in Figs. 2 and 3. At the 

beginning of the first step (Fig. 2), in the blastoderm formation 

stage (stage 3), superficial cleavage had occurred; a mono-

layer of blastodermal tissues covered the egg surface (see 

the schematic drawing in Fig. 1). There were some lipid drop-

lets and many glycogen granules in the cytoplasms of blasto-

dermal cells (Fig. 2A), and the rough endoplasmic reticulum

(rER) was not well developed (Fig. 2B). At the end of the first 

step (Fig. 3), in the late appendage formation stage (stage 

17), thick mitochondria and elongated rERs were observed in 

the cytoplasm. Lipid droplets were also seen, and some of 

these were attached to the rER (Fig. 3B, arrows).

Fig. 4 shows a sagittal section of the developing cater-

pillar at the end of the second step, the complete embryonic 

reversal stage (stage 22). In this stage, embryonic dorsal 

Fig. 1. Schematic drawings correlating the three steps of lipid 

incorporation with the stages of embryonic development.

Fig. 2. TEM images of embryonic tissues at the beginning of the 

first step of lipid incorporation, the blastoderm formation stage 

(stage 3). (A) Embryonic tissues facing the extraembryonic yolk. (B)

High-magnification image of an embryonic cell. The non-shaded 

panel in the diagram at the top indicates the step of lipid incorpora-

tion into the embryo, and the black bold square on the drawing of 

the embryo indicates the area observed by TEM. L, lipid droplet; g, 

glycogen granule; mt, mitochondria; rER, rough ER; v, vacuole. 

Scale bars, 2 μm (A), 0.6 μm (B).

Fig. 3. TEM images of embryonic tissues at the end of the first step 

of lipid incorporation, the late appendage formation stage (stage 17). 

(A) Embryonic tissues facing the extraembryonic yolk. (B) High-mag-

nification image of an embryonic cell. The non-shaded panel in the 

diagram at the top indicates the step of lipid incorporation into the 

embryo, and the black bold square on the drawing of the embryo 

indicates the area observed by TEM. Arrows indicate the attachment 

of lipid droplets to rER. L, lipid droplet; g, glycogen granule; rER, 

rough ER; mt, mitochondria. Scale bars, 2 μm (A), 0.6 μm (B).
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closure had been completed and about half the yolk cells 

were enclosed inside the midgut lumen without having been 

digested. Midgut cells were attached to each other and 

formed the lumen (Fig. 4, inset), but they were still morpho-

logically undifferentiated into cell types such as goblet cells 

or columnar cells. Several fat bodies were observed in the 

coelom of the developing caterpillar, and lipid droplets were 

seen in the yolk cells, midgut, and fat bodies (Fig. 4). Large 

oval structures in the cells of the midgut were surrounded by 

substances of the same electron density as the lipid droplets 

(Fig. 5). When the focus was changed, fringes were 

observed at the borders of these large oval structures (data 

not shown), which therefore represented large holes in the 

ultra-thin sections. Golgi complexes and well-developed rER 

were observed in the midgut cells (Fig. 5). The rER lumen 

became wide (Fig. 5C–E, white arrowheads), and vesicular 

structures were seen in the midgut cells (Fig. 5B–E, black 

arrowheads). Some of these vesicular structures were 

derived from the partially expanded rER (Fig. 5B, white 

arrow). Moreover, it was observed that the rER-derived 

vesicular structures were fused with lipid droplets (Fig. 5E, 

black arrow).

DISCUSSION

It is generally difficult to prepare insect eggs for electron 

microscopy, because they have many nutrients in the cyto-

plasm, such as lipid droplets and glycogen granules. It is 

known that chemical fixatives are relatively poor at preserv-

ing or preventing the extraction of some classes of mole-

cules, such as sugars and lipids, during the processing 

steps, and thus procedures may change the dimensions or 

arrangement of certain cellular components, such as the 

dimensions of the extracellular space (Chan et al., 1992, 

1993, Zechmann et al., 2007). The present study showed 

that lipid droplets and the surrounding ultrastructure of the 

cytoplasm are well preserved in eggs of B. mori prepared by 

using high-pressure freezing combined with freeze substitu-

tion. High-pressure freezing can fix and preserve the cell 

structure in its natural state without chemical fixation, mak-

ing it the most preferable procedure for observing the local-

ization of lipid droplets in the B. mori egg.

Lipid droplets have uniform electron densities in yolk 

cells and embryonic cells in the first step, and in the yolk 

cells, midgut, and fat bodies of the developing caterpillar in 

the second step. It is noteworthy that in the midgut cells in 

the second step, many large oval structures surrounded by 

Fig. 4. TEM image of embryonic tissues in the second step of lipid 

incorporation, the complete embryonic reversal stage (stage 22). 

The arrow indicates the junction of the intercellular midgut. The inset 

shows a high-magnification image of the area indicated by the 

arrow. The non-shaded panel in the diagram at the top indicates the 

step of lipid incorporation into the embryo, and the black bold square 

on the drawing of the embryo indicates the area observed by TEM. 

YC, yolk cell; MG, midgut; FB, fat body; L, lipid droplet; L’, large oval 

structure (a large hole in the ultrathin section); g, glycogen granule; 

yg, yolk granule; n, nucleus; mt, mitochondria; rER, rough ER. Scale 

bar, 8 μm (in inset, 0.8 μm).

Fig. 5. TEM image of the embryonic tissues in the second step of 

lipid incorporation, the complete embryonic reversal stage (stage 

22). The non-shaded panel in the diagram at the top indicates the 

step of lipid incorporation into the embryo, and the black bold square 

on the drawing of the embryo indicates the area observed by TEM. 

(A) Low-magnification image of a sagittal section of the midgut. Many 

large oval structures (L’) surrounded by a lipid substance are evident 

in the midgut cells. (B–E) High-magnification images of midgut cells. 

White arrowheads indicate rER; black arrowheads indicate rER-

derived vesicular structures; white arrows indicate the connection 

between rER and rER-derived vesicular structures; the black arrow 

indicates the fusion of rER-derived vesicular structures and lipid 

droplets. YC, yolk cell; MG, midgut; L, lipid droplet; L’, large oval 

structure (large hole in the ultrathin section); n, nucleus; mt, mito-

chondria; GC, Golgi complex. Scale bars, 2 μm (A), 0.5 μm (B–E).
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lipid substances were observed, in addition to small lipid 

droplets. We confirmed that the large oval structures were 

holes in the ultrathin sections. These large holes surrounded 

with lipid substances were also observed in the midgut in 

the third step (data not shown). Canavoso and Wells (2000) 

reported that in fifth-instar larvae of Manduca sexta, the trig-

lyceride pool in the midgut is metabolically active and serves 

as a reservoir to export diglycerides into the hemolymph. It 

seems that the lipid substances in the midgut are more 

unstable than those stored in fat bodies and yolk cells. 

Therefore, the large oval structures surrounded by lipid sub-

stances are presumably lipid droplets. Only the peripheral 

region of lipid droplets was maintained by the high-pressure 

freezing and freeze substitution used for TEM specimen 

preparation; the content in the center of lipid droplet was not 

retained. According to Miya (1976), there are large vacuoles 

in midgut tissues at stage 23 prepared by conventional TEM 

methods. Considering their morphology, it seems that the 

large vacuoles mentioned by Miya were corresponded to the 

large oval structures that might have been lipid droplets.

During embryonic development, lipids are involved at all 

stages from the extraembryonic yolk to the embryo prior to the 

major energy consumption by the tracheae late in embryogen-

esis (Yamahama et al., 2008). At the beginning of the first 

step, there are already some lipid droplets and glycogen gran-

ules in the embryonic cells. It seems that these lipid droplets 

are derived from the oocyte peripheral cytoplasm by superfi-

cial cleavage during blastoderm formation. Following the next 

stage, germband formation (stage 4), however, it seems that 

the lipid droplets are difficult to incorporate into the embryonic 

cells in the same manner as at stage 3, because all the 

extraembryonic lipid droplets are compartmented in the yolk 

cells. In order to incorporate lipid into the embryonic cells after 

stage 4, biogenesis of lipid droplets must occur.

At the end of the first step (stage 17), elongated rER 

was attached to lipid droplets in embryonic cells. In the 

second step, well-developed rER and ER-derived vesicular 

structures were attached to or fused with lipid droplets in 

midgut cells, and these ER structures thus seem to contrib-

ute to the biogenesis of these lipid droplets. It is well known 

that the ER is closely involved in the biogenesis of lipid drop-

lets in the cytoplasm (Kukulies and Komnick, 1984, van 

Antwerpen et al., 2005, Rovenek et al., 2006, Kadereit et al., 

2008, Ohsaki et al., 2008). Therefore, it seems that the 

attachment of the elongated rER to lipid droplets at the end 

of the first step contributes to the formation of lipid droplets.

Our results suggest that incorporation of lipid droplets in 

the first step can be subdivided into two stages: the first 

superficial cleavage of blastoderm formation, and subse-

quent incorporation from the embryonic cell surface. Obser-

vations of lipid incorporation in cells during embryonic 

development in B. mori will help elucidate the correlation 

between the acquisition of cellular function and morphologi-

cal cell differentiation during development.
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