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Abstract 

The present study evaluates the potential of improved third-generation lentivirus vector with 

respect to their use as an in vivo-administered T-cell vaccine against tuberculosis.  Intratracheal 

administration of the lentivirus vector encoding MPT51 of Mycobacterium tuberculosis could 

induce MPT51-specific CD8+ T cells in the mediastinal lymph nodes 2 weeks after the 

administration.  The vaccination could generate MPT51-specific memory CD8+ T cells in the 

lung, but not in the lymph nodes.  Further, a single intratracheal immunization of MPT51 

lentiviral vaccine decreased significantly the number of virulent M. tuberculosis in the lung after 

intratracheal challenge of the bacillus.  These findings suggest that intratracheal immunization of 

the third-generation lentiviral vaccines is a promising vaccination strategy against pulmonary 

tuberculosis. 
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1. Introduction 

Tuberculosis (TB) has been a major cause of death by infectious diseases worldwide.  There 

were an estimated 8.8 million new TB cases in 2005, and 1.6 million people died of TB [1].  An 

attenuated strain of Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is only currently 

available anti-TB vaccine which is effective against the severe child forms of TB, yet its efficacy 

against pulmonary TB in adult is controversial [2].  It is evident that there is an urgent need for a 

novel and more reliable anti-TB vaccine [3].   

Although the mechanisms of protection against TB have not been completely determined, 

cell-mediated immunity plays an important role in the control of M. tuberculosis infection.  

There is mounting evidence that type 1 helper T cells are involved in the development of 

resistance to the disease, primarily through the production of macrophage-activating cytokines, 

such as interferon-γ (IFN-γ) [4].  In addition, CD8+ cytotoxic T-lymphocytes (CTL) contribute to 

disease resistance since susceptibility to M. tuberculosis is greater in mice deficient in CD8+ T 

cells [5].   

Dendritic cells (DC) are the most potent antigen-presenting cells.  DC capture bacteria and 

other pathogens.  Then, they migrate to regional lymphoid organs, where they present antigens 

(Ag) to naïve T cells [6].  DC are also known to confer T cells the ability to home to 

non-lymphoid sites.  Activated effector/memory T cells migrate preferentially to tissues that are 

connected to the secondary lymphoid organs where Ag first encountered [7].  In this context, 

intratracheal vaccination is an attractive option to induce protective immunity against TB at the 

lung.  In fact, M. bovis BCG administered via the respiratory route has been shown to be more 

effective than when it was given subcutaneously [8-11].  However, intratracheal administration 

of M. bovis BCG may cause severe inflammation in the trachea.  For the intratracheal 

vaccination, such risk of adverse reactions should be avoided.  The development of recombinant 

viral vector systems for gene therapy has prompted examination of their efficacy in gene delivery 
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to DC and in direct immunization.  Adenovirus vectors were shown to deliver Ag genes to DC.  

However, pre-existing immunity to viral proteins expressed by the vector prevented effective 

immunization [12].  Retroviral vectors based on murine leukemia virus have been employed to 

express Ag in DC [13].  However, the retroviral vectors only infect dividing cells.   

Lentiviral vectors have been shown to efficiently transduce a variety of nondividing cells, 

including DC [14].  Successful transduction of DC with lentiviral vectors has been reported 

[15-17].  In addition, lentiviral vectors pseudotyped with minimal filovirus envelopes have been 

reported to increase gene transfer in murine lung [18].  Third-generation self-inactivating (SIN) 

lentiviral vector was chosen in this study because of its advanced safety profile, allowing its 

administration in vivo, and because of the presumed absence of pre-existing anti-vector immunity.  

Our aim was to develop third-generation lentivirus vectors that express an M. tuberculosis Ag 

and efficiently induce cell-mediated immunity against pulmonary TB by the intratracheal 

instillation.  As a target Ag, we employed MPT51, the protective character of which we have 

shown in our previous report [19].   

 

2. Materials and methods 

2.1. Mice 

BALB/c mice (8 to14 weeks of age; Japan SLC; Hamamatsu, Japan) were maintained in the 

Animal Facility of Hamamatsu University School of Medicine.  All animal experiments were 

performed according to the Guidelines for Animal Experimentation, Hamamatsu University 

School of Medicine. 

2.2. Lentivirus vector production 

The improved third generation lentivirus system had been developed [14, 20, 21].  The 

system comprised of following plasmids.  pCAG-HIVgp is a packaging plasmid in which all 

accessory genes (vif, vpr, vpu, and nef) and regulatory genes (tat and rev) are deleted.  
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pCMV-VSV-G-RSV-Rev is an expression plasmid for vesicular stomatitis virus G glycoprotein 

and Rev protein.  The SIN plasmid, pCSII-CMV-MCS-IRES-EGFP contains a multiple cloning 

site and the gene encoding enhanced green fluorescent protein (EGFP).  MPT51 DNA fragment 

was inserted into the vector, resulted in pCSII-CMV-MPT51-EGFP.  The MPT51 recombinant 

lentivirus vector was generated by transient transfection of 293T cells with pCAG-HIVgp (10 μg), 

pCMV-VSV-G-RSV-Rev (10 μg), and pCSII-CMV-MPT51-EGFP (17 μg) plasmids using 10-cm 

dishes with DoFect-GT1 (Dojindo, Kumamoto, Japan) transfection reagent.  293T cells were 

cultured in Dulbecco’s modified Eagle medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) 

containing 10% heat-inactivated fetal calf serum (FCS; Invitrogen, Carlsbad, NM, USA).  

Culture supernatants were collected every 24 h for 3 days, filtered through a 0.45-mm pore size 

filter, and concentrated by two-times ultracentrifugation at 50000× g at 20°C for 120 min.  The 

viral supernatants were concentrated 1000 times with the ultracentrifugation, finally resuspended 

in sterile phosphate-buffered saline (PBS), and stored at -80°C until use.  The virus titers were 

determined on 293T cells by measurement of EGFP expression using flow cytometry.  Titers of 1 

to 2 × 108 infectious units (IU) ml-1 were usually obtained through the experiments. 

2.3. Intratracheal administration 

Mice were anesthetized with an intraperitoneal administration of 0.075 mg ketamine/0.015 mg 

xylazine per gram weight of mouse.  Intratracheal administration of 5 × 106 IU of MPT51 

lentivirus in 50 μl of sterile PBS was performed by infusion through the vocal cords using a fiber 

optic light source (LG-PS2, Olympus Optical, Tokyo, Japan) for illuminating the entrance into the 

trachea [22, 23]. 

2.4. Bronchoalveolar lavage (BAL) 

 Mice were killed and a midline incision was made to expose the trachea.  An 18-G catheter 

was inserted into the trachea, and the lungs were lavaged with 5 ml of ice-cold sterile PBS. 

Lavage cells were collected by centrifugation at 300× g for 10 min at 4°C and washed with PBS. 
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2.5. Lung tissue lymphocyte isolation 

Lungs were removed from mice, transported in RPMI 1640 medium (5 ml per lung; 

Sigma-Aldrich), and cut into small pieces (1-2 mm2) with a forceps.  Tissue pieces were digested 

with 3500 dornase units ml-1 of DNase I (Calbiochem, Darmstadt, Germany) and 75 units ml-1 of 

collagenase type II (Invitrogen) at 37°C for 2 h.  The digest was filtrated through a 70-μm 

nucleopore filter and centrifuged (300× g, 10 min).  The cell pellets were resuspended in PBS 

containing 0.01 M EDTA and chilled on ice for 5 min, and then subjected to centrifugation in 

Ficoll-Paque Plus solution (Amersham Pharmacia Biotech, Uppsala, Sweden) at 400× g and 20°C 

for 30 min.  The pulmonary mononuclear cell interface was collected, washed twice, and 

resuspended in 5 ml of RPMI 1640 medium containing 10% FCS (RPMI/10FCS) [24].   

2.6. Analysis of CD8+ T cells using MPT51 p24-32 peptide/H2-Dd tetramer complex 

An MPT51 p24-32 peptide/H2-Dd tetramer complex was kindly supplied by the NIH Tetramer 

Facility.  Cells were treated ammonium chloride and potassium chloride (ACK) lysis buffer for 5 

min at room temperature to remove erythrocytes and washed twice with RPMI 1640 medium and 

resuspended in RPMI/10FCS.  The 1 × 106 cells were stained with phycoerythrin 

(PE)-conjugated MPT51 p24-32 peptide/H2-Dd tetramer complex, fluorescein isothiocyanate 

(FITC)-conjugated anti-CD8 (53-6.7; BD PharMingen, San Diego, CA, USA), and 

PE-Cy5-conjugated anti-CD4 (RM4-5; BD PharMingen) monoclonal antibodies (mAb) at 4°C for 

30 min.  After washing, the cells were resuspended in PBS containing 0.1% sodium azide and 

1% bovine serum albumin, and then analyzed on an EPICS digital flow cytometer (EPICS XL; 

Beckman Coulter, Miami, FL, USA). 

2.7. Quantification of IFN-γ with cytokine enzyme-linked immunosorbent assay (ELISA) 

Spleen cells were harvested from the immunized mice.  Recovered cells were plated in 

24-well plates at 2 × 106 cells per well in the presence or absence of 1 μM of MPT51 p24-32 

peptide for 5 days.  Concentration of IFN-γ in the culture supernatants was determined by a 
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sandwich ELISA as described in our previous report [25]. 

2.8. Protection assay against M. tuberculosis infection 

Immunized mice were subjected with intratracheal injection of 1 × 104 CFU of M. tuberculosis 

H37Rv 10 weeks after MPT51 lentivirus immunization.  Mice were sacrificed 5 weeks later and 

the bacterial numbers in the lung were counted in CFU on Middlebrook 7H10 medium (Becton 

Dickinson, Sparks, MD, USA).  M. tuberculosis H37Rv was kindly donated by Dr. Isamu 

Sugawara (Research Institute of Tuberculosis, Tokyo, Japan). 

2.9. Statistics  

Data from multiple experiments were expressed as the means ± SD.  Statistical analyses were 

performed by using StatView-J 5.0 statistics program (SAS Institute, Inc., Cary, NC, USA).  Data 

were analyzed with one factor-analysis of variance followed by the Fisher’s protected least 

significant difference (PLSD) test. 

 

3. Results 

3.1. EGFP expression of cells in bronchoalveolar lavage fluid (BALF) of mice 

intratracheally-immunized with MPT51 lentivirus 

The lentivirus vector used in this study was pseudotyped with vesicular stomatitis virus 

glycoprotein and thus was taken up through the normal endocytotic pathway.  Therefore, it is 

able to transduce a wide variety of cells.  We first examined EGFP expression of cells in BALF 

after intratracheal administration of MPT51 lentivirus vector vaccine.  As shown in Fig. 1, EGFP 

expression was observed 1 week after lentivirus administration and the peak of expression was 

reached around two weeks after the administration.  This observation indicates that the cells in 

BALF, most of which are macrophages, are transduced by the lentiviral vector and that protein 

expression of transduced vector requires at least 1 week after the administration.  We also 

examined EGFP expression in the mediastinal lymph nodes (MLN).  Preferential EGFP 
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expression in CD11c+ cells in the MLN was observed 2 weeks after the administration (data not 

shown).   

3.2. Induction of MPT51-specific CD8+ T cells in the MLN 

To address whether intratracheal administration of lentiviral vector vaccine results in the 

induction of MPT51-specific CD8+ T cells in tissues, CD8+ T cells were monitored in the lung, 

MLN, and the spleen by staining with an MPT51 p24-32 peptide/H2-Dd tetramer.  As shown in 

Fig. 2, kinetic analysis revealed that the Ag-specific CD8+ T cells appeared 2 weeks after the 

administration in the MLN and the peak of response was reached around 3 weeks after that.  In 

contrast, there appeared no detectable Ag-specific CD8+ T cells in the lung and the spleen until 6 

weeks after the administration.   

3.3. Detection of MPT51-specific memory CD8+ T cells in the lung 

We then examined the lung cells derived from mice intratracheally-immunized with MPT51 

lentivirus for detection of MPT51-specific memory CD8+ T cells.  We isolated mononuclear 

cells from lungs of the immunized mice 10 weeks after the administration and stimulated them by 

MPT51 p24-32 peptide for 5 days.  Then, expansion of MPT51-specific CD8+ T cells in the lung 

and the MLN was evaluated in flow cytometry with MPT51 p24-32/H2-Dd tetramer and anti-CD8 

mAb staining.  As shown in Fig. 3, expansion of MPT51-specific CD8+ T cells was observed in 

the lung of MPT51 lentivirus-immunized mice, but not in the MLN of the immunized mice and in 

naïve mice, indicating that MPT51 lentivirus intratracheal administration was able to induce 

MPT51-specific CD8+ memory cells in the lung.   

3.4. Induction of protective immunity against M. tuberculosis by intratracheal MPT51 lentivirus 

administration 

We finally evaluated the effects of intratracheal administration of MPT51 lentiviral vector on 

induction of protective immunity against M. tuberculosis infection.  We intratracheally 

administered 1 × 104 CFU of M. tuberculosis H37Rv to mice 10 weeks after MPT51 lentivirus 
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immunization.  Five weeks after M. tuberculosis challenge, lungs were prepared from the mice 

and the CFU of M. tuberculosis were evaluated.  The CFU in MPT51 lentivirus-immunized mice 

were significantly lower than those of naïve mice as shown in Fig. 4.   

 

4. Discussion 

The present study evaluated the potential of third-generation lentivirus vector with respect to 

the use as mucosal anti-TB T-cell vaccine.  From data described above, we were able to draw the 

following conclusions.  (1) The intratracheal administration of the lentivirus vector encoding 

MPT51 from M. tuberculosis is capable of inducing specific CD8+ T cells in the MLN.  (2) 

MPT51-specific memory CD8+ T cells appear in the lung, but not in the MLN.  (3) A single 

intratracheal immunization of MPT51 lentiviral vaccine decreased significantly the number of 

virulent M. tuberculosis in the lung after intratracheal challenge of the bacillus. 

The development of a variety of TB vaccine systems has been reported in order to obtain more 

effective TB vaccines over BCG vaccine, which is a gold standard of TB vaccine for the time 

being.  Virus-based vaccine strategy is one of them.  Vaccinia virus-mediated TB vaccines have 

been reported.  Zhu and colleagues [26] showed that immunization with 19kDa- and 38kDa- 

glycol-lipoproteins of M. tuberculosis reduced the bacterial numbers of virulent M. tuberculosis 

bacillus in the lungs of immunized mice.  Vaccinia virus-based vaccines have been successfully 

used as a boosting vaccine following BCG- or DNA-based priming vaccination [27].  Adenoviral 

TB vaccines have been also examined in Dr. Xing’s group [28, 29].  Wang and colleagues [28] 

reported that a single mucosal, but not parenteral, immunization with recombinant 

adenoviral-based TB vaccine encoding antigen 85A of M. tuberculosis provides potent protection 

from pulmonary tuberculosis.   

We here showed that a single intratracheal MPT51 lentivirus administration was effective for 

inducing antigen-specific CD8+ T-cell responses in the lung.  To our knowledge, it is the first 
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report of lentivirus-based vaccine trial for TB.  Esslinger and colleagues [30] showed that 

lentiviral vector injection into the footpad of mice transduced DC that appears in the draining 

lymph node and in the spleen.  They showed that in vivo administration of lentivector was 

superior to transfer of transduced DC or peptide/adjuvant vaccination in terms of both amplitude 

and longevity of the CTL response.  The results in this present study further showed the 

effectiveness of lentiviral vector system for mucosal T cell-based vaccination.   

Mucosal immunization studies have been reported against airway M. tuberculosis infection.  

Gallichan and Rosenthal [31] showed that long-term mucosal CTL memory was observed only 

with mucosal, but not systemic, immunization with an adenoviral herpes vaccine.  Among a 

variety of mucosal immunization routes, intranasal vaccination is one of the promising 

immunization routes for various TB vaccines [9-11, 28, 29].  Giri and colleagues [32] showed 

that intranasal vaccination with antigen 85A and antigen 85B of M. tuberculosis induced a 

significantly higher level of IFN-γ, interleukin (IL)-12, and IL-4 in cervical lymph nodes over 

subcutaneous vaccination.  Further, intranasal vaccination with these Ag imparted protection 

against M. tuberculosis comparable with that obtained from intranasal or subcutaneous M. bovis 

BCG immunization.  Another route for eliciting mucosal immunity in the lung is intratracheal 

administration of vaccines [33].  The method of intratracheal injection used in this study is a 

simple and rapid method without any invasive procedure [22, 23], compared with conventional 

intratracheal infection method with tracheal incision step (e.g., [34]).  The present study showed 

the feasibility of the intratracheal intubation method of mucosal immunization for airway 

infections.   

We showed here that MPT51-specific memory CD8+ T cells generated in the lung after a 

single intratracheal instillation.  Kamath and colleagues [35] showed that CFP10-specific and 

TB10.3/4-specific CD8+ T cells are greatly enriched in the lung compared with other sites of 

infection such as spleen or lymph nodes.  They showed that CD8+ T cells are cytolytic in vivo 
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and their cytolytic activity could be detected even as late as 260 days after infection.  Servina and 

Flynn [36] also observed that at 1 week post challenge with M .tuberculosis via aerosol, over 30% 

of CD8+ and CD4+ T cells in the lungs of immune mice expressed the activation marker CD69 

and could be restimulated to produce IFN-γ, showing a rapid response of CD8+ and CD4+ T cells 

in the lungs following challenge.  These rapidly expanded CD8+ T cells in the lung are derived 

from lung-resident memory CD8+ T cells because we showed that lung mononuclear cells 10 

weeks after MPT51 lentivirus administration responded to MPT51 p24-32 peptide in vitro and 

produced IFN-γ.  The result indicates that memory CD8+ T cells do exists in the lung.  But, 

some of them may be derived from central memory cells in parabronchial lymph nodes, which are 

recruited to the lung immediately after M. tuberculosis challenge, although we could not detect 

memory CD8+ T cells in the MLN [37].   

Our vaccine was capable of reducing the number of CFU challenged by about 50%, which 

seems to be not enough in terms of clinical relevance. Since we employed a single administration 

of the vaccine expressing a single protective antigen, MPT51, booster vaccines and the vaccine 

expressing several protective antigens could be required for the development of clinically 

effective vaccine. 

As memory T cells present in the lung have been reported to contribute mainly to protection of 

the host from secondary airway infection [38], the results in the present study suggest that 

lentivirus TB vaccine represents a promising novel TB vaccine capable of potent mucosal T-cell 

immune responses.   
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Figure legends 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  EGFP expression of cells in BALF of MPT51 lentivirus-administered mice.  Mice were intratracheally administered with 

MPT51 lentivirus and EGFP expression was measured by a flow cytometry every one week for six weeks after MPT51 lentivirus 

administration.  Representative data are shown from three independent data which showed similar results.  Percentages in the 

figure indicate those of EGFP-positive cells in total cells in BALF.   

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  MPT51 p24-32-specific CD8+ T cells in the lungs, MLN, and spleens of mice intratracheally-administered with MPT51 

lentivirus.  Mononuclear cells were harvested from the lungs, MLN, and spleens of immunized mice and double-stained with 

anti-CD8 mAb and MPT51 p24-32/H2-Dd tetramer and measured by a flow cytometry.  Representative data of 1 to 6 weeks after 

MPT51 lentivirus administration are shown.  Percentages in the figure indicate those of tetramer-positive cells in CD8+ cells. 
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Fig. 3.  Detection of MPT51 p24-32-specific memory CD8+ T cells in the lungs of mice intratracheally-administered with MPT51 

lentivirus.  The lung and the MLN mononuclear cells were harvested from immunized mice 10 weeks after MPT51 lentivirus 

administration or from naïve mice and double-stained with anti-CD8 mAb and MPT51 p24-32/H2-Dd tetramer and measured by a 

flow cytometry.  Representative data are shown from three independent data which showed similar results.  Percentages in the 

figure indicate those of the tetramer-positive cells in CD8+ cells. 

 

 

 

 

 

 

 

 
Fig. 4.  Induction of protective immunity against virulent M. tuberculosis infection with MPT51 lentivirus vaccination.  Mice 

were immunized with a single intratracheal administration of MPT51 lentivirus.  The MPT51 lentivirus-immunized mice or naïve 

mice were challenged with intratracheal injection of 1 × 104 CFU of M. tuberculosis H37Rv.  Five weeks after the challenge, the 

numbers of the challenged bacillus in the lungs were counted.  The means ± SD from 6 mice per each group are shown.   


