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Abstract : We discuss a stationary Gaussian process U(t), t €R, having a correlation
function of the form c,e=4:!tl +c,e~221tl and give a complete description of the double
Markov structure of U(z) on the half-line ¢ = 0. In fact, we obtain the exact form of

KM:O-Langevin equation as well as the canonical representation of U(t), ¢ = 0.

~81. Introduction

Let U(t), t €R, be a stationary Gaussian process having a correlation function r (¢) of
the form

(1) r(t) =cie 1t dcrerziel)
where A1, A:; > 0 and c¢i, c: > 0 with the normalizing condition ¢; + ¢z = 1. The time
evolution of such a process U (t) starting at the remote past to» = — o was studied by
Okabe within his framework of KMO-Langevin equations ([10], [12] and [13]).

The purpose of this paper is to investigate the time evolution of U (£) when the initial
time to is finite (we take t,= 0 for notational simplicity); indeed, we establish a com-
plete description of the variation dU (¢) = U (t + dt) —U (t) in the form of KM.O-
Langevin equation (see [8], [11] and [13]). At the same time, we obtain the canonical
representation of U (¢) on the half-line ¢ 0 (see (5) and (7) below).

For our purpose, we define a Gaussian process

(2) X=UW®W-EU®ITOI=U@—-r)U0),t=0,
and calculate its covariance function '

3) Tt s)=EX® X ()]=rt—s)—rt)r(s

‘ :él cietit (ehs —r(s)), 0<s<t.
This process is easily seen to be double Markouv ; for the definition and basic facts about

double Markov Gaussian processes, we refer to the book [2].
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Some Double Markov Gaussian Processes

We carry out detailed computations for this particular process to get the following
stochastic differential equation of the Ito type:

) dX (t)=adB (O +dt [- 8O X O+ 7 (t, &) Xw)dul.
This yields the desired KM.O-Langevin equation

(5) dU M =adB(®)+dt[~B8OU@W+][ 7 (t, U w)du+s QU O], ¢ >0.

The canonical representations of X (t) and of U (¢) then take the following forms,

respectively:
(6) X =[5 e g ) adB W,
and l
() UW=r®UO+[ I3 e e @} «dB @), t >0,

In the aboveéxpressions, B (t) is a standard Brownian motion expressing the innovation
process of X (t), and the initial value U (0) is an N (0, 1)-random variable independent of
the Brownian motion B (¢).

Both the coefficients {a, 8 (t), v (t, u), & ()| and the functions |g; (u)} =.1 satisfy-
ing él e*i¥ g, (u)=1, can be determined explicitly in terms of given data {A,, ¢:} %1 of
r (¢), which will be discussed in Sections 2 and 3. These formulae stated in Theorems 1~
3 constitute the main result of this paper.

The stationary process U () admits a simple representation of independent sum

®) U@®=U:@+0: (0 =3VZek[ e« dB @), teR,
where U, (¢) is a familiar Ornstein-Uhlenbeck process corresponding to r; (t) = c;e % !¢!
(t=1,2), and {B: (t)} &, are two independent Brownian motions. The present task stems
from our problem of seeking the canonical representation ([2], [6] and [7]), and in view
of the stationary property, U (¢) is expressible by means of one Brownian motion B (t)
asin (7) (cf. [4] and [14]).

In case ¢: is very small, U (t) should be viewed as a perturbation of the Ornstein-
Uhlenbeck process U, (t). By describing the curve y = logr (¢) on a short interval
0< t< <t (r depending on {A., ¢;:!), one can observe an interesting behaviour of r ()
similar to the one studied in [3]. So the stationary process U (t) can be thought of as a
good model for the phenomena described in [3], and thus our results (5) and (7) are
expected to be valuable beyond the theory of stochastic processes.

In the final section, we will briefly discuss a double Markov process Y (t) in the

restricted sense that is connected with the process (2) via the equation

©) X;(t) = Y (), t>0,

1 __d
¢ (t) dt
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with a suitable positive function ¢ (t) on [0, o).

The author is grateful to Professor A.Minakata who gave him valuable information
about the paper [3]. He is also grateful to Professor Y.Okabe who kindly indicated nice
relations (see Proposition 4) among the KM:O-Langevin data {e, 8 (¢), v (t, w), & ()}
that were discovered in a general setting of stationary Gaussian processes {(cf. [11] and

[81).

§2. The time evolution of X (t)

This section is devoted to the study of the Gaussian process X (t) having the covariance
function (3). In particular, we are going to establish the equation (4) and the canonical
representation (6) by carrying out explicit calculations of all requisite quantities
—la, B (), v (¢, u)] and lg: W)} ..

Assuming that A: > . without loss of generality, we begin with discussing the modified
process

(10) X=X @) /cietit, t 20.

Its covariance function takes the form

(11) T (t,s)=T1(ts) cie @9 =hy(s)+f(t) ho(s),0<s<t,
where f(t): = (c: /c1) e 1=t h (s): =e2218 Jc;—1—f(s) and h:(s): =
e@1%22)s fo —1 — f(s). Inview of this form (11), the canonical representation of

X (t) is expected to be expressible as

(12) XO=[ 1+ ®-fw)gw)]owdBu),
which leads us to write
(13) dX (O =dt[f" ) [ g W) o @) dB@)l+0(t)dB®.

In fact, the positive function ¢ (¢) can be first determined by computing the variance
of (13):
E [(dX (1)*]=0?(t) dt + o (dt).
This yields ‘
o2 (&)=|{T (¢+dt, t+dt)—2T (t+dt, t)+T (¢, ¢)} dt
=lim T (1 ) = 2T (6, )= R 0+ £ (0 B (0= () ha (©
=241t 2 (ci A1+ c2he) el
We thus get '
(14) o t)="(a/c1)et, ai=V2(cihi + c:a2) >0.

The next task is to analyse the first term in (13), which is F, (B) (=F, (X))-measur-
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able and independent of the innovation dB (¢) occurred on the infinitesimal interval
(t, t + dt). Here we used the notation

F. (Y) = the o-field generated by |Y (s) ; 0 < s < t},
for Y =B, X. If we write

(15) [lgw)ow)dB fk (¢, w)dX (@),
then we have
(13)’ o (¢)dB(t)=dX (t)—dt [/ (&) [ R (¢, u)dX ()],
A combination of (15) and (13)’ implies the resolvent equation
(16) k(t,u) J'f g(s) ks u)ds.

This equation is equivalent to
=Thu)=—f ) gkt u), kuu)=g @),

and further to the expression

(16)° k(tu)=g@ex [-[ [ (s)g(s)ds].
Now, what one really wants to determine is this function:
an wt)=exp [ f(s)g(s)ds],
because unknown key functions can be expressed as follows:
(18) gw)=0ogw W) /f wy=w W)/ wk)f @),
and
(19) Rt,u)=ww)g @)/ wt)=w W) wt)f @).

We are ready to derive a linear differential equation of the second order to give the
exact form of w (¢t) by using its solution. For that purpose, we start with the integral
equation

E [@X ()X ()]—de " (6)[ (¢, u) E [(dX @) X ()]}
=0 (t)E [(dB(t)) X(s)]=0, 0<s<¢

which 1s expressible in terms of the covariance function I':

al"(s u) af(u,s) 8F(t s) ,
@) [k u) =2 R, Sl dy = S (1),

Differentiating this equation with respect to the variable s, we obtain
(20" o2 () h(t, )+ [ R(t,u) f (s V) By (s Au) du=h;(s),0< s< ¢,

where sVu = max (s, u) and sAu=min (s, u).

Note that
Q(s):=hi (5)/ ' (5) =2 s erres =1 >0,
ol 2h (A,
q(S)—Q (S>_ ‘Cz (/11_/12) et >O’
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and o (s)/ f (s)=ae'25 /¢, (li—X:) =V q(s) awith a:= ¢z (A}—21D ./
(¢1A1+ ¢z 4:) > 0. Then the integral term in (20)" becomes

[Cw @) /w) £ () Qs Au) du
=(f" )/ w @) {lw (u)Q(s/\u)]i,—f:w(u)q(u)dul
= 1) = (" () /w () 1Q O+ w ) g @) dul,
and hence ’
(21) g(s)w ($)=alQO+[ww)q @) dul
holds for all 0 < s < t <oo. It follows that z (s):=q (s) w (s) is a solution of the

following differential equation

(22) 5—6{2'(3)—@' (s)/q(s))z(s)t=az(s), s>0,
under the initial condition
(23) 2(0)=¢q ) and 2 (0)=a @ (0) +22. 4 (0).
Since " (s) /q (s) = 22: (constant), (22) takes the simple form
(22)7 27 (s)—2x:2 (s)—az(s)=0,
which yields
(24) z(s)=e"*5 |bicoshpus+ (b./ p)sinh s}, =0,

with =V Al +a =V (c2haitcide) Mdr/ (it czd) (< u<ii). By virtue of
(23), the coefficients b; are given as follows:
by =g (0) and b, =a Q (0) + A2 q (0) = b. q (0),

where we put b = lez i+ ¢ ks &) A A/ {erdi+caA2)} /2. Note that # < b, <., and
another constant b- = cicz (Ai—22)2,” 2 (1 A+ c2Az:) > 0 will be important in what
follows. We thus arrive at the exact form of w(s) =z(s) /q(s):

(25) wis)=e425¢(s), ¢ (s):=coshus+ (by / ¢)sinh us,

Conversely, if we start with this function (25), then we define g (z) by (18) and
k(t,u) by (19):

(26) gw)=(c:/c:(Mi—4)) e =228 (¢ (u) /¢ (u) —22)
and

27) Bt u)=(c/c:(li—A)) et 2% (¢  (w)—A 8 w)) /¢ (¢).
Then the equation (20) as well as (20)” holds for all 0 < s < t <o, which tells us that
the expression (13)” defines a true innovation process. Taking (15) into account, we get
the equation (13) equivalent to (13)”. Integrating this (13), we can reach the canonical
representation (12) of X (¢). Thus we have found explicit expressions of all ingredients
in the equations (12), (13) and (13)".

We are now in a position to state our result on the Gaussian process X (¢).
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Theorem 1. We have the canonical representation (6) of X (t) with g (u) =
el — (¢ (w) /¢ Ww)—2)/ (—2)! and g: (w) = e % (¢’ (u) /¢ (u)—2:)/
(Ai—As).

This is an immediate consequence of (10) and (12).

Theorem 2. The process X (t) satisfies the stochastic differential equation (4) of the
Ito type with B(t) = Ai+—¢" ()¢ () and v (¢, u) = (b- /¢ () (A1 + As)
fcosh nu+ (2 / (c: A1 +c142)) sinh puf .

Proof. We have already shown the stochastic differential equation of the modified

process (10):
18)” dX(t)=(e"t/c1) adB &)+ dt {(f" (&) /w () f: W W) /f @)) dX W)}.
With the exact form (25) in mind, we compute the above d¢-part as follows:
(W &) w ) X —¢ O w (t))f: W W) /f @) X (uw)du
=(e'1t/c)) {logw ()" X (&) = (e +t/w () [ (w' (u) e =128 e 4 X (u)du]
=t c) (8" (1) /¢ (t) —2) X () + (b- /¢ (t))‘f: ¢ (w) X (uw)dut,
where we set
(@8) ¢ @w)=— o o nu (w)e | /b
=[ {1+ 22) be— (22 + A1 22)} cosh xu + {(A1+20) 1 —
be (2 +A:122) / ¢] sinh pu] /b
= (A4 A2) fcoshpru + (¢ / (co v+ €1 A2)) sinh peu} > 0.
We thus have | '
dX (t) = cre”* 1t dX () — 1 X () dt .
=adB () +dtI—(At+d—¢" ()¢ () X @)+ (b-/¢(1))
J: ¢ (u) X (w)dul,
which completes the proof of Theorem 2.
Following Okabe [13], we prefer the present style of KMO-Langevin equation (4),

7

although it admits another useful form similar to (13)

@’ dX (&)= adB (O —dt [ j(t,u) dX (), ¢>0.
It is easy to see that the Volterra kernel in (4)” is given by
(29) itw=p@—{ 7 (ts) ds

Remark. The canonical representation (12) of X (¢) can be derived by a different
method due to Pitt [14] that includes solving a Riccati differential equation (cf. [15]).
The method of [14] seems to be efficient only for double Markov Gaussian processes. On
the other hand, the present approach via the linear differential equation (22) of the second

order can be further extended to arbitrary N-ple Markov cases in which the correlation
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function of U () can take the general form
1)’ r=3cert (3 a=1,N>2).
The details will be published in a forthcoming paper.

§3. The time evolution of U(t)

Having analysed the probabilistic structure of X (£) in the previous section, we now
proceed to study the stationary process U (t) itself. First note that the canonical repre-
sentation (7) of U (¢) on the half-line £t = 0 is an obvious consequence of Theorem 1,
because U (0) is an N(0,1)-random variable independent of the process X (t).

We are ready to derive the KM:O-Langevin equation (5) from Theorem 2, which gives
us the following: '

dU (t) =r" (¢) dtU (0) + dX (¢)
=«dB)+dt [=8WUD+[ 7t u)Uw)du
O+ @B @[ 7 ¢ w) rwdul UWO).
Hence the & (¢)-function, important in the theory of KM.O-Langevin equations ([13]),
is equal to

(30) SW=r®+r®p® —J.: y (&, u) r(u)du =élc,- 8. (t),
where we defined &, (t) = (e %9  + e %t (t) —~J': y (¢, u) e* it du.

In the proof of Theorem 2, we showed

B{t)=ra— @ (t) /w(t)), and
y (G u)=—"(e*2* /w () (W' (t) e @ r1-42u) gt
=0-/4() ¢ @W.
We therefore have
Si{t)=—e 1t (6) /wt)+e 2t fw (t) e G222t —y” (0} /w ()
=(A—b+) /¢ (1),
and
S)=e 2t [li—A—w (8) /w (D) +J‘: (W (w)e~@i—vau) e Gui=ddudy /iy (t)]
=gt Q= —w (&) /w@®+ 1w @& —w 0)—(Ai—2) (w @& —-D} /w ()]
=(L—bs) /¢ ().
It follows from (30) that
(31) S (®)=(c:hitciia—bs) /$ ()=b-/¢(t).
Using ¢ ~ (¢) = ¢ * ¢ (t) and the above formula (31), we can write
w(t)=b-e*:t /5 (1),
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as well as the following equalities:
BM)=h+k+d (6) /0 @)=¢(0)+(ogs ()",
@2 Jrtw=59¢ W,
¢ (u)=—ert (e 2% /8 (u) em@rmiu}’
=(Xi+2:) (1.8 W) — A/ (erditezAs) & (Wi

Summing up the above discussions, we state the following

Theorem 3. The process U (t), t = 0, satisfies the KM, O-Langevin equation (5) with
8 (t) given by (31).

In addition to (31) and (32) mentioned above, we prove some relations found by Okabe
within his framework of stationary Gaussian processes (cf. his unpublished note and
[111).

Proposition 4. We have (i) B (£)=06*®); () v & 0= o) —8"(8);

) -2y (t+uu)+o(E+u)y (t+u t)=0.

ou
Proof. (i) isimmediate; since b+ ux2=0b%, we easily see that
¢ (&) ¢ ()
B ()=—1 . S =0t )18 )2 —pr42 ()} /b2
: g7 (1) ¢7(0)

=62(t) (b2— u?) (cosh? #t —sinh? xt) /b2 =257%(¢).
(ii) We have only to recall the formula (32):
Bo@=—8"()=¢ s @)=7 (0.
(i) - Note that :
%7 t+uu)=06"(t+u)dW)+ot+u)¢’ W)

e tu) |4 (tt+u) ¢ @)
b #(t+u) sﬁ'(u)"
and
d | t+u) ¢ () _‘?‘ t+u) ¢ @) | 2‘?‘(t-l-u) ¢ (u) _
du | g tru) ¢ @l e trw) ¢7@ | T ls+u) s@ |
Hence

$ (t+u) ¢ (u) ¢ (&) ¢ (0)
$ (t+u) ¢ (u) g’ (t) ¢7(0)
=(Ai+2A2) (% (cohr+ c1A2) — bi)cosh pt
+ by (czAi+cid) — 1) psinhpt] =—b-¢ (8),
which completes the proof of ).

¢ (t) 1
¢/<t) /‘Z/(Cz/h'i‘Cu‘z)

0
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Proposition 5. (i) Jim 8 (§) =Ai+h—p:=fa;

(i) lim ¥ (t+sut+s)=(i—p)(p—2r) e*e wi=y (t,u) forevery 0 <Su<t;
(i Jim o () =0.

The proof is obvious, so is omitted.

Before closing this section, we would like to mention that the KM:O-Langevin equation
of U(t) for t > t, tends to the right KMO-Langevin equation of U (t), t ER, as
to——oc ([11]). Namely, the stationarity of U (¢) enables us to write

()0 dU@W=adBO)+dt[=B(t—t) U@+ [ 7 (t—to,u—1t) Ulw)du

+ 0 (t—to) Ulto)], t > to.
Letting the initial time £, go to —oo, it follows from Proposition 5 that the above
equation tends to

5)- AU (&)=« dB (&) + dt[— B U @)+ [ _7e(t,u) Uw) dul,
which coincides with the result of Okabe [10], [12].

§4. Double Markov process in the restricted sense

In this final section, we find a double Markov process Y (t) in the restricted sense that

is derived from the process X (t). Indeed, define

(33) YO =/ ¢ W) X@u)du t>0.
Then we get X (t) =Y’ (¢t) / ¢ (¢t) and
4)” dX({t)=adB®)+dt[—-B @) X&)+ 1) YV,

which shows the simple Markov structure of the pair (X (¢), Y (¢)).
We are going to show the double Markov structure of Y () in the restricted sense (cf.

[2] and [9]). That is, we have to compute three positive functions v: (t) (i=0, 1, 2)

such that .
(34) Y (@0 =0, (&) [1f vils) dsl ve () adB (),
which means that
(34)" L _od 1 d 1 _ yvi))=uB(t) (whitenoise).

vo () dt wv: () dt v (b)
Now, substitute the canonical representation (6) into (33). Then we have

Y (©)=[F(t,u) «dB ), F(t, w):=3 g, () [ e99 (s) ds.
It follows from (31) and (32) that l
b- f;e“ 5 ¢ (s)ds=—[(e225 ¢ (s)) e Wrmas],
=—e 1t ($7 (1) A (D)) + e (" (w)— A8 (w)),

and
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b-f e g (s)ds ==l 4 () 1+ (=) [ (e 4 () ds
=—e (g7 () —hd (D) +e (3 (w)—2A: ¢ (W) +(Ai—2y)
(e722t g () —e 22 ¢ (u).
Hence by Theorem 1, we obtain
b-F (t,u)=[e* 1 0 (3" (t)—2:8 (1) (¢ (W) — A ¢ (W)
—e U (g () =k () (6 W2 g W)/ (A=) ¢ ().

Noting that A: ¢ (¢) — ¢~ (¢£) >.0, we can rewrite the preceding expression as follows:

¢ (t)—A: ¢ (t)
¢ (B — A ¢ (D)

#7 () =208 W)y iu(y g _
T g ) ¢ @) 4 @) b (- ),

F(t,u)=e 22t (A ¢ (£)— ¢ () leGrmant

—e— (132w

which coincides with the specified form of (34) if we choose
ve () =e 22t ¢ (1) (— ¢ (1) /4 () >0,

$ () =28 (D)
$ (L) - ¢ (D)

v =6t (=g ()¢ () >0
It is easy to check the positivity of v, (¢):

e himiat I g’ (t)—Ar g (2) ) —( g’ (t)—2: ¢ (8) |
b (A1—Az) \¢,(t)—/11¢(t) ¢ (t)—A. ¢ (2)

=e G129t (Li+A) ¢ () {4 &) —Aded (8) /(i it cada)l /
b-(¢" (H)— A ¢ (1)*
=e 1=t g () (1) /(" () —Ai g (1)) >0,

where we used again the relations (31) and (32).

(35) vy (2) = (e~ 1740t )" /b (A= 22),

U1(t)= /11_/12)

We thus arrive at the following
Theorem 6. The process Y (¢) is double Markov in the restricted sense and has the

canonical representation (34) with positive functions v; (t) defined by (35).
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