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Abstract: Under a restriction of the quasi-Markov property on the circle 8!, we give
detailed descriptions of stationary Gaussian processes X(t), t€S"', and of Gaussian
processes Y(¢) with stationary increments to observe the mutual dependence of two in-

novation processes arising from the forward and backward canonical representations.

§ 1. Introduction

With the theory of multiple Markov Gaussian processes in mind ([5], [12]), we will
discuss some Gaussian processes Z(t) indexed by t€8' (the unit circle), for which the
quasi-Markov property ([8], [9]) holds: For each open arc ICS"', we have the interpola-
tion formula

(1) E[Z(s) | Z(t); t&II=E[Z(s) | Z(t); te 1]
for every s€I. (Note that the boundary &/ consists of two end points of 1.) This signifi-
cant extension of the usual Markov property is also called reciprocal ([1], |;2] and [17])
or two-sided Markov ([7]). In fact, we will solve innovation problems arising from the
forward and backward canonical representations, for stationary quasi-Markov processes
X(t) in §2 and for quasi-Markov processes Y(t) with stationary increments in § 3.

We will start with studying a typical class of stationary Gaussian processes X(t) which
possess, in addition to the quasi-Markov property, the reflection-positivity on the circle.
Parametrizing the point t€S' by — z <¢t= 7 (modulo 2 ), the latter property (also
called T- or OS-positive ([5], [6], [7] and [13]) can be stated as follows: For any
0=t <t:<-<t.=r and any a; €R, i=1,2,---,n, we have the inequality

(2) EL2aX(~t))(E a,X(6))]=3 % @i R(d(—t:,1)) 20,
where R(t) denotes the covariance function of X(¢), i.e.,

(3) R(d(t,s))=E[X(£)X(s)],
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d(t,s):=1t—s| A2z — | t—s | ) being the distance function on the circle. Such a co-
variance function R(t) verifying (2) admits the following integral representation ([7]):

) R(t)=[ cosh m(x—1t) dpt(m),0S t=x.

In particular, R(¢) =cosh m(x —t) coming from the Dirac measure # = § i for some
m>0, is nothing but the one that we will deal with in § 2 and for which the quasi-
Markov property (1) is valid.

§ 3 is devoted to a study of a wider class of Gaussian processes Y(¢) with stationary
increments, which are expressible as

(5) Y(£)=(X(t)-X(0)// 2, tes!,
in terms of stationary quasi-Markov processes X(t) with covariance functions R(d(¢,s)).
For such processes Y(t), Molchan ([9]) determined all possible forms of structure func-
tions

(6) V(d(t,8)):=E[(Y(t)—Y(s))*1=R(0)—R(d(¢,s));

In addition to the above-mentioned family a) cosh m(x —¢) (0<m< ), we should
take two other families of R(¢): b) sinh m |= —¢ | (0<m< ) and ¢) sin m |z —¢ |
(0<m=1/2). For these structure functions V(¢) we will show the double Markov struc-
ture of Y(t), which means that this paper can be thought of as a continuation of the
author’s previous papers [11] and [12] (see also Remark 1 in this connection).

The purpose of the present paper is to investigate both the forward and backward
canonical representations and then observe the mutual dependence of their innovation
processes. Namely, define

(1) X()=X(xt)—E[X(£¢) | X(0),0=t=wr,
which are simple Markov, and hence their canonical representations easily follow:

(8) Xu()=] fi(t)g:(w)dBulu),
f1(t) and g.(u) being given explicitly. For any process Y(t¢) of another kind, starting
with the expression

(9) Ya(£):=Y(£6)={X:(6)+ (R()/RO)-1XO)/ 2, 0<t<nr,
we can go likewise to reach the desired canonical representation

(®) Yo()=[171(0) &)+ Fo() &2 (w) 1 dBe(w)

(see Theorem 4).

Now, new objects discussed in this paper are in order:

(10) I(t,s)=E[B.(t)B-(s)], 0=<t;s<m,
and

(10) I(t,8)=E[B.(¢t)B-(s)], 0<ts=nr,
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where B:(t) (resp. B:(¢t)) are the innovation processes of X:(t) (resp. Y=(¢)) givenin (8)
(resp. (8)). These quantities are important in Okabe’s theory ([13],[14]) concerning the
fluctuation-dissipation principle for stationary processes with discrete as well as contin-
uous time parameter. Our main results then lie in the following formulae: Putting ¢ =
+1 fora), =—1forb) and ¢),

(11) I(t,8)=ep:i(t)p:(s),
and

(1) I(t,9)=¢ p1(£) pr(s)+ pa(t) pa(s),
thereby calculating explicit expressions of these p-functions (see Theorems 2 and 5).

The present analysis of both pairs (X:(¢), B:(t)) and (Y:(t), B:(t)) has a new aspect
in contrast with our previous one of the time evolution structure for multiple Markov
Gaussian processes on the line ([11], [12]). Indeed, we are going to investigate the fol-
lowing key expression

(*) Z(O=3 Fi(8) ¢+ o WdBw), 0= t=r,
where & =1 &,11_, is an i.i.d. sequence of N(0,1)-random variables and B(t) is a standard
Brownian motion. As for a required relation between two random elements & and B(%),
we consider the following two: , »

(+) & and B(t) are assumed to be independent,
which occurs here for N=1 when we investigate (9);

& and B(t) are assumed to have a particular correlation expressed
in the form E[ £, ([, o (WdB(u)]=—F.(¢), 1S isN,
which yields the independence of & and Z(¢). The latter case ( —) occurs for N=1 when

we give a realization of two mutually dependent Brownian motions B:(t) in the frame-
work of canonical representation theory (see Theorem 3 and also [10]).

Such a process Z(t) often arises since one needs to add independent random elements £
to a basic additive process B,,(t):=f; o (1)dB(u); This goes to the first case (+). On
the other hand, in the second case ( —) the expression ( % ) should be rewritten into the
form of expanding B.(t) into independent random terms:

(%) BAD=Z(t)+3 Fu(t)(=£.).

Then by extracting some building blocks &:from this expansion, one finds a process Z(t)
having less randomness than the original process B, (¢). As a famous example of (%)’
with ¢ (#)=1, we mention the Paley-Wiener method to construct a standard Brownian
motion ([4]).

The covariance function T*(¢,s) of (%) becomes
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(12) ()= Wdut 3 F:(DF(s),
which tells us a special symmetric nature within a general class of Goursat kernels of
order N+1 ([5]):

(12 T(8,3)=3 Fi(tVOH (¢Ns).
That is, H: (t)==F;(¢t) except i = 0 (here the sign corresponding to the assumption (%)),
and Fo(t)=1, Ho(t)= f: o *(u)du. This symmetric nature of (12) will lead us to derive
a stochastic Ito-Volterra equation for { % ), from which the canonical representation of

Z(t) follows via the resolvent equation (29) (see also Remark 4 where the case N=2 is

briefly mentioned).

§ 2. Periodic stationary reflection-positive Gaussian processes

We begin with discussing a periodic stationary Gaussian process X(t), t€R?', with
mean 0 and covariance function R( | £—s | ); the period is here taken to be 2 (i.e.
X(t+2x)=X(t) for all t), and R(t), determined up to modulo 2 r, is taken from the
class a) mentioned in §1: For 0=t < 2r,

(13) R(t)=cosh m(rx —t), m>0.

The parameter ¢ can be thought of as the point moving on the circle $!~[~ =,z 1, and
we would rather consider a stationary process X(t) indexed by ¢t €S' and having the
covariance function

(13)’ R(d(t,s))=cosh m(x —d(¢,s)),
where d (¢,s) denotes the distance function on S*.

We are thus given a stationary process X(t), — 7 = t = r ; let us define the forward
process

(14) X.(t):=X(t)-E[X() | X(0)]=X(t)-R(£)X(0)/R(0), 0=t=n,
and the backward process _

(14 X ():=X(—t)—E[X(—t) | X(0)]=X(—t)—R(t)X(0)/R(0), 0=<t=nr,
where the parameter t and —¢ run the semicircles S+~ [0, 7 ] and S-~ [ — = ,0], respec-
tively. Then both processes have the same covariance function of the form

(15) Ro(t,s)={R(t—s)R(0)—R(¢)R(s)}/R(0)

={cosh m{(2x —t+s)—cosh m{2x —t—s)}/2cosh mx
=ginh m(2x —t) sinh ms/coshmr, 0=s=<t=r,

which shows the simple Markov property of X:(¢), 0= t<r.
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We also need to see the similar form of E [ X, (t)X-(s)]:=R:(t,s):
(16) R.(t,s)={R(t+s)R(0)—R(¢)R(s)}/R(0)
= {cosh m(t+s) —cosh m(t—s)}|/2cosh mr
=ginh mt sinh ms/cosh mr, 0=s=<t=r,
which implies the reflection-positivity (2) as follows:
EL(S aX(=t))(2 a,X(e)]
=El Elai a; {R(¢t;,t) +R(¢:)R(t;)/R(0)}
= (Elai sinh mti)z—i-(iglaicosh m(x—t:))*/cosh mr = 0.
It deserves mentioning that the quasi-Markov property of X(t) is an immediate conse-
quence of (15) and (16). That is, for each s and p, 0 < s < p < r, the random variable
(17) X(s)—E[X(s) | X(0),X(p)1=X.(s)—E[X.(s) | X+(p)]
=X.(s)—sinh ms (sinh mp)~*X.(p)=X(s) —sinh ms (sinh mp)~ ' X(p)
—{sinh m( z +p—s)—sinh m(x —p+s)}{sinh m( = +p)—sinh m(x —p) = X(0)
is seen to be independent of all X:(¢), p=t=nr,and X-(u), 0 = u = r, which yields (1)
for an open interval I =(0,p).
Now, the simple Markov property of (15) enables us to form
X.(t)=sinh m(2x —0) [ gw)dBu(u), 0St=nr,
with g(u) satisfying f:gz(u)du=sinh msicosh mzx sinh m(2x —s)}1*. We thus get
g°(u)=2m sinh mzx (sinh m(2x —u))™?, to state the following
Proposition 1. The forward and backward processes X:(t) have the canonical representa-
tions of the same form:
(18) X.(t)=y 2m sinh mr sinh m(2 —¢) [, (sinh m(2x —u))~*dBa(u).
The innovation processes B:(t) are then given by
(19) Bo(£)=1X.()+m [, coth m(2r —u)X.(w)dut/y 2m sinh mx .
Proof. We verify (19) as an easy consequence of (18):
B.(6)=1 [ sinh m(2x —u){Xa(u)/sinh m(2x —u)|’ dul/y 2m sinh mx
={X.(t)~ [ (sinh m(2x —u))’ (sinh m(2x —u))~ Xu(u)dul /Y 2m sinh mr,
which is equal to the right-hand side of (19).
We now proceed to observe the mutual dependence of two innovation processes B:(¢)

and B-(s) derived above. By (16) and (19), we compute (10) this way:
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I(t,s)=E[B:(t)B-(s)]
=2msinh mx ) "{R: (t,s)+mf0tcoth m(2x —u)R:(u,s)du
+mf: coth m(2x —v)R.(t,v)dv
+m2f: f:coth m(2x ~u) coth m(2r —v)R:(u,v)dudv}
=(m sinh 2mzx )~ '{sinh mt + mf:coth m(2x —u) sinh mu dul
{sinh ms + mfos coth m(2x —v) sinh mv dvi.
We have proved the following
Theorem 2. We have I(t,s)=p.(t)p.(s) with
pl(t)=mf; (sinh m(2x —u)) 'du
=(y/sinh 2mux /m )log[tanh mx /tanh m( x —¢/2)].

We are now in a position to give a realization of these mutually dependent innovation
processes B:(t), 0 £ t < r, in terms of a standard Brownian motion B, (t), —r =t=nx
(cf. [10]). First fix the backward Brownian motion B-(t)=B¢(—t), 0 = t < r. Then the
forward Brownian motion B:(t) admits a representation

(20) Bo(t)=[$ (twdB @+ ] ¢(twdBs(w), 0St<n,
where kernel functions ¢ and ¢ must satisfy

E(B.()B-(s)]=] $(twdu=p.(t)p:(s),
E[B-()B.(s)1=[#(t,u) $ (swdut[ ¢ (tu)§ (su)du=¢As.
Hence we get ¢ (t,u)=p:(¢t)pi(u), and ¢ (t,u) should be determined by

(@) [ (6w ¢ (sw)du=tAs—kipi (£)pa(s),

where k:= | pi (w) l2(0.x) = v sinh 2mx [coth m(2x —u)1i =1. We thus find (12) with

minus sign by taking N=1, ¢ (#)=1 and F.(¢t)=p:(¢).

Now, a new Gaussian process defined by

(22) Z(&):=B+(t)—E[B:(¢) | F.(B-)]

=B.()=p:(t) [] pi (wdB-(w)=[ ¢ (£,5)dBo(w), 0= ¢<r,

admits the key expression

(23) Z(t)=p:(2) & +B.(2),
with & :=— [ pi(u)dB-(u) and E[ £ B+(£)1=—p:(¢). Here F. (X): = o { X(u); 0=us¢]
for any process X(¢), and we note that the filtering problem for (23) is easily solved:

(24) £(0)=E[¢ |F.(B))=—] pi(wdB.(u),
and

(25) EL(&—£&())=1-[, (pi(w)*du

=1 +cosh 2msx —sinh 2mzx coth m(2x —t) >0

for every t < x.
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We are ready to derive a stochastic Ito-Volterra equation for the process (23) having
the covariance function (21). Namely, we can write

(96) dZ(£)=dt [, L(t,s)dz(s)+dBi (),
to determine a Volterra kernel L(¢,s) by the following integral equation:

(21 L(t.s)=—1pt(t)— [, L{t.w)pi (w)dul pi(s), 0Ss<t<r,
which is equivalent to the independence of dB,(¢) and F. (Z). As unique solution of this
(27), we get

(28) L(t,8)=—pi (11— [, (pi (w))*dut~pi(s).
The resolvent equation

(29) L(t,9) +K(t,9) =] L(t,u)K(w,8)du
then provides us with the resolvent kernel

(30) K(t,8)=pi()pi(s)11=[ (pi(u))*dul*.
In view of the known formula ¢ (t,u) =1—f: K(s,u)ds ([5]), we thus arrive at the desired
canonical kernel ¢ (t,u) in (22), which is stated as the following
Theorem 3. The Gaussian process Z(t)=B+(t) —E[B.(t) | F.(B-)], 0= t < r, isadouble
Markov process to be represented canonically as follows: '

81 2@ =] [-piw) [ pl(s)dsi1= [ (pt (v)) dvi~*1dBs(w),
with p (t)=y m sinh 2mx /sinh m(2x —¢).

By virtue of the equation (26), the innovation process Bo(t) is, in turn, expressible in
terms of Z(t) and hence in terms of & and B.(t); we obtain

(32) Bo(t)=2(6)+ [ pi(s)dz(s) [ pi(wl1— [ (p%(v))*dvi~"du

=¢ f:pi(u){l—f: (p1(v))*dvl~'du
+B.()+ [ pi(s)dB.(s) [ pi(w)i1— [ (pt (v))*dv} " du.

Remark 1. As in the previous papers [11] and [12], we would like to study the following
generalization of (13) treated in this section:

(4) R(t)=élci cosh m: (= —t),
where 0<mi<m.<-*<m,and ¢; >0, i =1,2,--*,n. Under the normalizing condition that
R(O)—i cicosh mir =1, we have, for 0L s<t<n,

(33) Ro(t s)—{ 2 cicosh mi(x —t+s)H 2 ci cosh m;r |

-—{E, c,cosh m: (n—t)HE c,cosh m,(;r—s)}

n

2 ? sinh m:(2x —-t)smh m:s +1S§'S cic; {(exp[mi(x —t)+myn ]
—exp[ mir —m;(x —t)])(exp [mis]—exp [—m;s])
+(exp[—mi(z—t)—msr J—exp[mizr +m;(x —t)])(exp [ —mis]—exp [m;s])

+(exp[mi(x—t)—mix l—exp [—mix +m;{(x —t)]) (exp [m:is] —exp [m;s])
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+(exp[—mi(x —t)+mir ]—exp [mix —m; (z —8)])

(exp [—mis]—exp [—m;s]) /4,
which is a Goursat kernel of order n(2n—1). We therefore apply the theory of multiple
Markov Gaussian processes ([5] and [12]) to the processes X:(¢) having this covariance

function (33), although we cannot here enter into details.

§ 3. Periodic Gaussian processes with stationary increments

In this section we impose the condition of stationary increments instead of stationarity
and study the analogous innovation problem for a wider class of quasi-Markov Gaussian
processes.

Let Y(t), t€S*', be a Gaussian process with mean 0 and structure function V(d(t,s)) =
E[(Y(¢t)—Y(s))?]. The quasi-Markov property of Y(¢) leads us to consider the particular
form V(t)=R(0)—R(t),0=t < x, R(t) being one of the following decreasing covari-
ance functions: '

a) cosh m(z —t) (0<m<o); b) sinh m(x—t) (0<m<o0);

¢) sinm(x—t) (0<m=1/2).

This list is due to Molchan ([9]) (see also Remark 2 and [1]). Parametrizing the point
onS'by —x = t=x (modulo 2 ) again, we see that such a process Y(¢) with Y(0)=0
is expressed in the form

Y(£)=1X()-X(O) I/ 2,
where X(t) is a stationary process with covariance function R(d(t,s)).
Remark 2. i) In the preceding section we discussed X(¢) coming from the class a), which
possesses the reflection-positivity on the circle.. As an extremal case of this class, we
mention the following limit for V(t), not for R(¢) itself:

Vo(t)=lim lcosh mx —cosh m(x —t)}/m*zx =t (2x —t)/2x,
which is nothing but the structure function of a pinned Brownian motion. This simple
Markov process is well-known ([4]), although its canonical representation follows from
Theorem 4 below by the limiting procedure mentioned above.
ii) Let X((x,¥)),(x,y) €ER?, be a Lévy’s Brownian motion and set X(¢)=X((cos ¢, sin t)),
— 1 = ¢t = . Then the covariance function of X(¢) is R(t)=1—sin(¢/2) and hence V(¢)=
sin(¢ /2), which should be contrasted with the class ¢) with m=1/2. Si Si ([15], [16])
gave a nice account of this double Markov process by taking a different approach from

ours (cf. [8]).
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Now observe that, for0 = s=t=nr,

(15)° Ro(t,s)={R(t—s)R(0)—R(t)R(s)}/R(0)= f(2x —t) f (s)/R(0),
where f(¢)=sinh mt for a) and b),=sin mt for ¢). Note that R(¢)=f(x —¢t) for b) and
¢). Hence the forward and backward processes X:(¢) are simple Markov and represented
canonically by

(18 Xo(6)=V2Cf(2x—0)[ dBu(w)/ f (27 —w), 0St=x,
where we put C*:=mf(x ) fora), =f (x) for b) and c). On the other hand, the corre-
lation between X:(t) and X_(s) is expressed by

(16)’ Ri(t,s)={R(t+s)R(0)—R(t)R(s)}/R(0)= ¢ £ (¢t) f(s)/R(0),
for any 0 = t,s < r. Hence, in the cases b) and ¢), the sign ¢ = —1 violates the reflec-
tion-positivity (2), but the quasi-Markov property (1) still holds.

We are now going to investigate a new object Y(t) of this section. Restricting its
parameter ¢ on the semicircles S+ and S-, respectively, we consider the forward and back-
ward processes

(9 Ye():=Y(x0)=V(e) e N 2RO)+Cf(@2x —0) [ dBu(w)/ [ (27 —u), 0S ¢ <,
where & :=—X(0)/y R(0) is an N(0,1)-random variable independent of the innovation
processes B+(t) both. We will see the double Markov property of Y:(¢) to get the explicit
canonical kernel of the form (8).

For that purpose, we begin with studying any process Z(t) expressed in the form

3 z()=1[ hw) o (wdul & +[ o (WdBw), 0 t=r,
where an N(O,l)-random variable & and a Brownian motion B(¢) are mutually independ-
ent (i.e. in the case(+)), and where ¢ (u)> 0 is continuous and A€ L?(0,z ). For such a
process Z (t), write the stochastic Ito-Volterra equation

(26)’ dz(t) dtf (t,5)dZ(s)+ o (£)dB(t),
where B (¢) is the innovation process of Z(t) and a Volterra kernel L(¢,s) satisfies the
integral equation

27y o (8)L(t,s)=l¢ (t)h(t)—f: L{t,u)h(u) o (Wduth(s), 0<s<t=r.

As in the preceding section, unique solution to the above (27)’ is obtained as follows:

(28 L(t.9)= o (DA(I1+ [ At (w)dul " h(s)( o (s))7,
which yields the resolvent kernel K(t, s) of L(t,s):

(30) K(t,9)=—a (OR(D)A()] o ()(1+ [ h*(w)du)} .

We thus obtain the desired canonical representation

81 z(e)=] Lo +1[ his) o (s)dsth(w) {1+ [ h* (v)dv}—*1dB(w),

which is a double Markov process. Furthermore, the Brownian motion B(t) is expressible

59



Some Periodic Gaussian Processes and the Quasi-Markov Property on the Circle

as

(32 B(o)=] [1-h(s)[ A1+ [ h* (v)dv) 1 *dul( o (5))~*dZ(s)

=1 [ 11-h(s) [ @)1+ [ B () dvl - dulh(s)dst &
+B(6)— [ 1 mw) 11+ [ bt (v)dol = dubh(s)dB(s).

Remark 3. Asin (24) and (25), it is easy to solve the filtering problem for (34):

(35) E(O=EL[¢ | F.(@1=11+[ ka1t [, hu)(s ()" d2(w),
and

(36) e*(0):=E[(¢—£()']=11+[ A*(v)dv)}".
Under the present condition that A(u)€L?(0,x ), we have e(¢t)> 0, which means that
F.(Z)=F.(B)§ o (£)VF.(B) for every t €(0, x ]. On the other hand, if we had the first
time ¢, such that f:hz(u)du=0° for some A(u)€L'(0, z ), then e(£,)=0 and & would be
measurable with respect to F.,(Z)=F. (B); After this moment ¢, the increment dB(t) of
the innovation process would coincide with the original white noise dB(t), t > t:.

Now, we are ready to give a complete description of our processes Y:(¢). By (9)’, we
set

(38) Z()=Y:(6)/Cf 2 —t)=V(OW mf (2x) f2r—t)}" ¢

+ [ dBu(w)/ f (27 —u),
and therefore in the present concrete situation, we have
o (t)=1/f(2x —¢t) and
RO =1 mf @x) 1 f (2 =N V() f@r =)V
=W em$ (mz) fQ@r =011 1f @r—t)— e ml

where we put ¢ (£)=tanh ¢ for a), =coth t for b), =cot ¢t for ¢). The two integrals

(37) {

appeared in the canonical kernel of (31)’ are shown to take simpler forms like these:

First, for a) and b), we have
(38) f:h(s) o (s)ds Zf:((::::(cosh v— ¢ )(sinh v)~*dv/v 2m$ (mrx )
= ::::;:)(cosh vt e ) du/y 2mé (mx )
== c{$(m(x—1/2)— ¢ (m(x —w/2) I/ 2m$ (mx);

Similarly, for c),

(38) f:h(s) o (s)ds =f::22:_—:;)(1—cos v)~"'dv/y 2m$ (mx )
=—eld(mlz—t/2))— ¢ (m(x —u/2))I/V 2m$ (mz ).
Next, we see that
(39) 1+ [ h*(wdu=16mt/2+ ¢ (m(x —t/ D)1/ $ (mn),
where 8 =+1 fora) and b), =—1 forc).

In view of the formulae (81)’ and (32)’ in a general situation, some calculations based
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on (37)~(39) lead us to the following result.
Theorem 4. We have the canonical representation
(40) Yo()=[ Cf@r—0ll— el (m(x—t/2)— ¢ (m(x —u/2))]
{f 2r—w)—eml/2ml s mu/ 2+ ¢ (m(x —u/2))11dB:(w)/ f (2x —u).
Furthermore, the innovation processes Bi(i) are written in terms of Y(t) as follows:
(41) Bu(o)=C* [[[1-1(f" 2z —s)— e m)/ 2mf (2= —s)]|
[ @r—w— emf @r—w)(o mu/ 2+ $ (mlx —u/2)))} ™ du]
FQ@r—s5)d[Y(£s)/ f(2x—s)]
=C 1 Y(x0)+ ] j(t,8) Y(£s)dsl,
where we set
(42) j(t,s):=f Qun—s)/fQRr—8)—{(f Qr—s)=em)/f(2x ~s)}*
{2m(oms/2+ ¢ (m(x—s/ 2N —(sm/2)

[A @r—w=em)/ f 2z —w)H 6 mu/ 2+ § (m( = —u/ 2)}du,

which is a Goursat kernel of order 2.

We are now in a position to calculate the mutual dependence of the two innovation

processes B.(t) derived above. For that purpose we note the following Goursat form of

order 2 for the covariance function R2(t,8):=E[Y(t)Y(—s)], 0 = t,s =< r: By (9)’ and

(16)’ we have
(43) R.(t,s)=1ef(t) f(s)+V(t)V(s)l/2R(0).

It follows from the sign of ¢ that the reflection-positivity for Y(¢) holds only in the

case a).
We make use of (41)~(43) to get
1(t,s)=E [B.(t)B-(s)]
=C”{Rz(t,s)+f(:j(t,u)Rz(u,s)du+f:j(s,v)Rz(t,v)dv
+ [ [1j () j (8,0)Rs(w,0) dudv}
=(2R(0)C) " & (F(D)+ [} (t,0) F (W) (£(5) + [} (8,0) f (W)dv)
V() + [ () V@) da) (V(s)+ [ (,0) V(v)dw)
We thus reach the desired formula (11) by setting
44) 5r(D):=(f(2) +ft' tw) £ (wdu)/V mfar)
= 0-1@r—s)~ em)/2mf @z =)t [ (f" (2x —u) = e m)
1f2r—w)(omu/2+ ¢ (m{x —u/ DN} dully mf(2x )/ £ (27 —s)lds
= [/ mf@)/ f2x =)L+ e/ 2m)(f’ (22 —5)— e m)
{8 (m(x—5/2)—8(ma)lioms/2+ ¢ (m(x—s/2))}"1ds,
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and
(45) pa(6):=(V()+ [ j(tw) V(wdu) N mf(2r)
= [ 11 @r =8)— e m)/ 2mf @r ~)1 [ (f (2 —w) = e m)
fQr—uw)(omu/2+¢(m(xr—u/2)))} "dul
(/" (@r—s)— em)/V 2m$ (mx) f(2x —s)lds
=f:(v $(mx)/2m (f Qr—s)—em)
{f(2r—s)(oms/2+ ¢ (m({x—s/2)))} ds.
What we have proved is the following
Theorem 5. We have I(t,s)= e pr(t)p:i(s)+p2(t)pa(s), 0=ts=nr,
with p-functions defined by (44) and (45).
Remark 4. As in Theorem 3, consider a Gaussian process
(46) Z(t):=B.(t)—E[B:(t) | F.(B)]
=B(6)= [ 1 ¢ 51 ()B4 (w)+ps ()5 () | dB-(w)
=B:(t)+{echipi(t) € i+hap:(t) €21, 0=t<nm,
where we put
ko= pi(w leco, o) =[1=(f (2 )/ 2){ ¢ (mx )— ¢ (mz/ 2)}*
{omn/2+ ¢ {mn/2)17 1121,
ko:= N pi(w) leco, -y =[1—¢(ma)/(smn/2+ ¢ (mx))]'*<1,
and £:=— :ﬁ'i (u)dB-(u)/ k: (i =1,2), which are both N(0,1)-random variables and
independent of Z(¢). Defining a new N(0,1)-random variable £ » independent of &, by
E=(e.—pe)N1-p7,
p:=E[&.:&.1=@1(w),p2 (W) (o, - )/ Rik:
=C*e{ ¢ (mn)—¢ (ma/2){/mkik:t dmn/2+ ¢ (mx/2)}>0,

we have

(46)’ Z(t)=B.(t)+{eckip:i(t)+heops(t)} £ 1+kaV 1— p 2 pa(t) £ 5.

We thus find again the key expression ( % ) under the assumption (—) stated in §1. In
this example, N=2, ¢ (O=1land Fi(t)=ekipi(£)+k:0p:(t), Fa(t)=ks v 1— p *p,(2).
Because of the limited space of this paper, we cannot give a full account of (%) for
N2 2; In a forthcoming paper, we plan to develop an extension of our results for N=1 to
general N including the case N=o0, as well as a generalization (11) mentioned in Remark

1.
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