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Abstract: For fractional Brownian motions with exponent % (0< % <2), we give some
representations of a new type which have a connection with the continuous wavelet

transform.
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§ 1. Introduction and results in the one-dimensional case

The purpose of this short note is to establish some representations of a new type for a

fractional Brownian motion {B.(x); x&R?}, which has the covariance function
1 I(x, y)={lz[*+|y|"—|x—y|"}. 2

where 0< 2<2 and |x—y| denotes the Euclidean distance between x and . In this section
we prove our result (Theorem 1) in the case d=1; in the next section, we are g(_)ing to
discuss an extension to the multi-dimensional cases d =2 (see Theorem 2).

A usual representation of a centered Gaussian system {X(¢): t€ T} with covariance
function I'(¢, s) is constructed as follows (cf. [3] and [6]):
i) First choose a suitable measure space (S, #) to find a family of real-valued functions

{#:(w); t= T} in the Hilbert space L2 (S, 1) such that
2) (¢, s)=szt(u)fs(u)dp(u) for any ¢, s T.

Such an expression (2) was called a model of the covariance function in [6].
ii) Next take a white noise (Gaussian random measure) {W(A); ACS} based on the

measure space (S, ). Then we get
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®) X(1)=$ /:(w) aw(w)

Now for T=R, let {B.(t); tR} be the fractional Brownian motion with exponent #.
The Brownian motion corresponds to the case £=1, in which the increments dBi(¢)=Bi(¢
+dt)— Bi(t), t<R, are mutually independent. On the other hand, the correlation function
of Bx(t) has the persistency when %2>1 and the antipersistency when 42<1 ([1]). As was
discussed so far in the theory of Gaussian processes, we take the Lebesgue measure space
(R, du) as a natural choice of (S, #), and from the property of stationary increments we
are led to set the following form:

) _ flu)=K(t—u)—K(—u).

It turns out that the scaling property of B.(f) imposes a strong condition on the above
kernel function K(¢) (cf. {7], [9] and [13]):

5) K(ct)=c"""P2K(t), for every ¢ >0,
which yields the following well-known expression of Bx(t):

) But)=" {Kult 1)~ Ku(— w)}aW (),

6y Ku(t)=c:|t|" D2+ c [t|* P sgn(2),
where (¢4, ¢-) is a pair of normalizing positive constants and sgn(#)=+1 for ¢t >0, =—1
for ¢<0.

By virtue of a recent result ([2]) on noncanocnical representations of Brownian motion,
one can construct a class of isometries Jg, v defined on L¥R, du) such that the range of
Jigien 18 equal to

(g1, -, gv]*={/ELXR, du); S_ Flweglu)du=0 for all i, 1=i<N}.
Applying such an isometry to (6), we can derive a different representation

) Bu)=\" UKt = )= Ki(— )(w) aW(a).

We are now in a position to discuss our result on representations of Bx(t) related to the
continuous (also called integral) wavelet transform T (see [4] and [5]). In contrast with
the previous measure space (R, du), our present choice of (S, x) becomes S=(0, ©©) xR,
di(a, b)=a 2da db, where a=(0, =) and b&R indicate dilation x— ax and translation x—
x+b& on R, respectively.

Now, let ¢ (x)EL2%R) be an arbitrary real-valued function satisfying

® 22 | F ()P e de=2a | F(OF |l dg=Cu< oo,

the Fourier transform of #(x) being defined by
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7=\ e y()dr.

Such a mother wavelet ¥(x) brings her daughter wavelets

©) Vasl) =7 (£

), (a, b)E(0, ©)XR,

by which an integral transform from L3R, du) into L3S, x) can be defined as follows:
(10) (Th)a, )=\ vas(@)(z)lz.

The dual of this continuous wavelet transform 7 admits the expression
(an (TE@=\ dor@)hla, badadb, Wa, HELS, o).

Thanks to the strong admissibility condition (8), we have

(12) U5 (1oa, 0X(Tfda, Datdadb=C A(@)flw)dr,

which implies a useful inversion formula éTé‘- Ty=1I (identity) (cf. [4], [5] and [14]).

We are ready to state our result on the fractional Brownian motion Bn(f). Take a
Gaussian' random measure {W(A): AC(0, c©)xR} based on the measure du(a, b)=

a*dadb. Then the following key assumption enables us to prove Theorem 1 below:
(13) " 17©F lerds=21 F(&)F & de=Du(m)<co.

Simple examples of such a ¢ should be mentioned here:
(14) ;&(x):S:cos(xE)E"e"’sz d¢ (a, B>0).

Theorem 1. For any real-valued function ¢¥(x) satisfying the conditions (8) and (13), the

fractional Brownian motion B.(#) can be expressed in the form

(15) B =K\ (Waelt)— b0 a*7d W (a, b),
where £ is a normalizing constant given by
(15 k=02 (h+1)sin(xh,/2)/” Du(B)}2.

Proof. Let us begin with computing the variance of B.(%1). Noting that

® o hebinz, g 1 (®sin2a , _ w22 '
So“ sin‘e da hSo & =T Dsin(an s (0<h<),

we see by (15) and (15) that

R AW e o o P

a

o0

:kzgo a (h+1)dagojm{¢(i a-+ u) - ¢(u)}2du
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=il 17 | F(oRae)

T
:%’;—ZSTJ v (5)|2d5{8:a‘(h“)sin2(a5 /z)da}

_ e S:|E|h I J(E)Pdég:a_(hﬂ)sinza da

2T

=§’Dy(h),/2I'(h+Dsin(zh,2)=1.
Then it easily follows that

BB 1= {o( )~ y(- L) o tda b= ET (B0

a
for every ¢ >0, which tells us that E[(B.(#))*]=|#|". Observing that the variance of the
increment

Bi(t+5)~Bu)=h{ \" (JaslD) = Vas(0)} a2 W (a, b+3)

does not depend on s<R, we have completed the proof of Theorem 1.

§ 2. An extension to the multi-dimensional cases

This section is devoted to an extension of Theorem 1 to the multi-dimensional case x&
R4(d =2), in which the fractional Brownian motion Bx(x) is a Gaussian random field with
covariance function (1). Following Yor [15], we would like to introduce d X d matrix-
valued functions and a corresponding Gaussian random measure.

Now set S=(0, ®©)xXR? du(a, b)=a“*"Vdadb with a=(0, o) and b&R? indicating
dilation and translation on RY, respectively. We form a Hilbert space L?4(S, 1) consisting
of all d X d matrix-valued functions F(a, 5)=(F;(a, b))¢;o1, each element F;{a, b) being

real-valued, such that

0

(16) 1F(a, b)”z:SwSRdTr(F(a, b)F(a, b))a~“* dadb

—2350§ Fia 0)a“dadb<oo.
In order to form a Wiener integral of F(a, b), we need a d X d matrix-valued white noise
{(W(A)=(W;(A))%;-1;; ACS} based on the measure space (S, ). That is, each element
Wii(A) is a Gaussian random measure with mean 0 and variance p(A), and these random
measures Wi( ®)(i, j=1, -, d) are mutually independent. We then define a Wiener

integral

(S, Fla pyawia, 0)=330 Fula, aWula, b)

o0
(1]

26



EREMAERE —REF BT (1997

which turns out to be a Gaussian random variable with mean 0 and variance |F{g, )]

Let ¥(x)=(¥;(x))¢;=1 be an arbitrary function in L?; (R?, dx) satisfying the following

conditions:

a7) (223, TP €l de=Culd) <o,

18) 230, | TAOF el ds=Dod, <o (E=(&, -, £)ERY
and

(19) 7(Qx)=Q¥(x)Q", xER?,

for every orthogonal matrix Q=(Q:)%,-1. Some examples of such a ¥ should be noted:
Taking any real-valued even function g(#) of the form (14), we have

i) W(x)=q(x|) I with unit matrix I=(64)%=1;
i) Px)=q(z)J(x) with J(z)= (—ﬁ@)w.

Here it deserves to mention that a particular d X d kernel function K(x) of the form |x|"?{/
—poJ(x)} (p=(d —h),”2>0) was used in [15] and played a role similar to (6).
Now putting

(20) oo(x)=a"" W( z=b >“ fd/z( gf"j(x—;b»:ﬂ’

we are in a position to prove our main result on a representation of Bi(x), xER%
Theorem 2. For any d X d matrix-valued function ¥ (x)=(¥;;(x))¢;=1 on R? satisfying the
conditions (17), (18) and (19) mentioned above, the fractional Brownian motion Bx(z) can

be expressed in the following form:

@ Bu@)= K@), (Tasl@)= Tasl0)}a*?aW (a, b)

d d (‘o
=HDEZNS, A Basl) = (F)as ) a™ 2dWi(a, b),
where £(d) is a normalizing constant given by
21y Ed)={2°7**T (h+1)sin(xh, 2),/ Deld, h)}'%

Proof. We first compute the variance of Bi(ey) for ei=(1, 0,--+, 0) ER%

BiBie)=H@OEELS, (w(272)- v -2)f el

i=1j=1 a a

=kd) X% ZS S {Taer+u)— Ts(u)Pa " Vda du

=DRE & dal kg, Je e 17 | B )z

da d

= () gy 2, T OF de\ sin(a/ Da "V da
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2—h 0
=/c2(a’)(—§n)—dDw(d, i\, & sin’a da=1.
The scaling property E[Bi(cx)]=c"E[Bi(x)] for every ¢>0, as well as the property of
stationary increments immediately follows from the expression (21).

Our final task is to show the orthogonal invariance of (21) by making use of the key

condition (19). Namely, for any orthogonal matrix Q=(Q:)%;=1, we can write

BB Q@)= E (S (o) v L) orrdaarr

i=1j=1 a

- {2 o5 e
- ool 52

o252} )] {2 et

We thus get the conclusion that E[(Bi(x+y)— B.(»))*]=|x|*, which completes the proof of

Theorem 2.
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