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Abstract 

Objective:  The serrated pathway is a distinct genetic/epigenetic mechanism of the adenoma-carcinoma sequence 
in colorectal carcinogenesis. Although many groups have reported the genetic-phenotypic correlation of serrated 
lesions (SLs), previous studies regarding the serrated pathway were conducted on patients with SLs that have differ-
ent germline and environmental genetic backgrounds. We aimed to compare pure somatic genetic profiles among 
SLs within identical patient with SPS.

Results:  We analyzed SLs from one patient with SPS (Case #1) and compared DNA variant profiles using targeted 
DNA multigene panels via NGS among the patient’s hyperplastic polyp (HP), three sessile serrated lesions (SSLs), and 
one traditional serrated adenoma (TSA), and separately analyzed three SSLs and one tubular adenoma (TA) within 
another patient with SPS (Case #2). In two patients, known pathogenic variant of BRAF (c.1799 T > A, p.Val600Glu) was 
observed in one TSA and one SSL in Case #1, and in three SSLs within Case #2. The pure somatic pathogenic variant 
BRAF (c.1799 T > A, p.Val600Glu) among SLs with identical germline genetic background supports its importance as a 
strong contributor for SLs.
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Introduction
Colorectal cancer (CRC) is one of the most common 
cancers worldwide and ranks as the sixth leading cause 
of cancer-related deaths [1, 2]. Since CRC arises from 
premalignant polyps, the detection and removal of these 
lesions decreases both CRC incidence and mortality [3]. 
Some groups have reported that 15–30% of all CRCs are 
initiated from serrated lesions (SLs) rather than conven-
tional adenomas arising through the adenoma-carcinoma 
sequence [4–6]. SLs are histologically heterogeneous, 

including benign hyperplastic polyps (HPs), precancer-
ous sessile serrated lesions (SSLs), or traditional ser-
rated adenomas (TSAs) [4]. Among these SLs, HPs are 
the most frequent subtype and SSLs are the second most 
common form of SLs. SSLs are recognized as important 
precursors of the serrated pathway showing a high CpG 
island methylator phenotype (CIMP) [7, 8].

The serrated pathway is a distinct genetic/epigenetic 
mechanism of colorectal carcinogenesis, but this has not 
been fully characterized. Although many groups have 
reported the genetic-phenotypic correlation regarding 
SLs, the precise profile and mechanisms of these serrated 
pathways for the prevention of colorectal carcinogen-
esis are not fully elucidated, as previous reports involved 
many patients with SLs with different germline and 
environmental backgrounds [9–21]. Therefore, genetic 

Open Access

BMC Research Notes

*Correspondence:  iwaizumi@hama-med.ac.jp

1 Department of Laboratory Medicine, Hamamatsu University School 
of Medicine, 1‑20‑1 Handayama, Higashi‑Ku, Hamamatsu 431‑3192, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2629-0830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13104-022-06245-3&domain=pdf


Page 2 of 7Hidaka et al. BMC Research Notes          (2022) 15:350 

comparison and analysis of multiple SLs within the same 
patient should be conducted.

Serrated polyposis syndrome (SPS) is characterized by 
multiple SLs located throughout the colon and is accom-
panied by an increased risk of CRC. The diagnosis of SPS 
is based on the cumulative lifetime number of HPs, TSAs, 
and SSPs in a patient who meets one of the two follow-
ing World Health Organization (WHO) criteria, includ-
ing (1) > 5SPs proximal to the rectum, all being ≥ 5  mm 
in size, including ≥ 2 that are ≥ 10 mm; or (2) > 20 SPs of 
any size distributed throughout the colon, with ≥ 5 being 
proximal to the rectum [22]. Therefore, it is important 
to compare genetic profiles among SLs within identical 
patient with SPS to understand the pure somatic genetic 
variant associated with the serrated pathway.

In the present study, we customized a set of targeted 
DNA multigene panels and used it to evaluate the vari-
ant SL profiles. Herein, we show differences in the main 
genetic contributors to the serrated pathway among SLs 
within the same SPS patient.

Main text
Methods
Patients
We analyzed nine SLs and one non-SL (tubular adenoma) 
from two patients with SPS who met the WHO 2019 
criteria for the diagnosis of SPS. Both patients provided 
written informed consent, and the study was approved by 
the Institutional Review Board of the Hamamatsu Uni-
versity School of Medicine (Approval No. 17–222).

Samples, DNA extraction, and quality assessment
SL samples were obtained from the Department of Diag-
nostic Pathology at Hamamatsu University Hospital as 
formalin-fixed paraffin-embedded (FFPE) tissue from 
the two patients with SPS. The polyps were resected by 
EMR. We also obtained matched normal blood sam-
ples. Genomic DNA was extracted from macrodissected 
tumorous and non-tumorous tissue using a QIAamp 
DNA FFPE Tissue Kit (Qiagen, Hilden, Germany), and 
extracted from the blood using an EZ1 DNA Blood 350 µl 
Kit (Qiagen). The quality of the gDNA was analyzed 
using the 2200 TapeStation (Agilent Technologies, Santa 
Clara, CA, USA) system using the TapeStation Analysis 
software (Agilent), which automatically determines and 
displays the DNA integrity number (DIN) as a measure 
of DNA integrity (https://​www.​agile​nt.​com/​cs/​libra​ry/​
appli​catio​ns/​5991-​5258EN.​pdf ).

Next‑generation sequencing (NGS)
We customized the multigene panel (72 genes) by add-
ing the QIAseq Human Colorectal Cancer Panel (71 
genes, DHS-002Z; Qiagen) to the RNF43 gene because 

the pathogenicity of the RNF43 gene variant has been 
reported in SLs [23]. The customized multigene panel 
was used for library construction according to the manu-
facturer’s instructions. The libraries were assessed using 
a QIAseq Library Quant Assay Kit (#QSTF-ILZ-R; Qia-
gen) and applied to a MiniSeq sequencer (Illumina, San 
Diego, CA, USA). The Qiagen web portal (https://​geneg​
lobe.​qiagen.​com/​jp/​analy​ze/) and VariantStudio software 
(Illumina) were used for data analysis and alignment. 
GRCH37 was used as the reference genome. All detected 
variants were validated using Integrative Genomics 
Viewer 2.9.2 (IGV; http://​softw​are.​broad​insti​tute.​org/​
softw​are/​igv/​home).

IHC staining
IHC was performed as described previously [24].

Statistical analyses
Statistical analyses were performed using IBM SPSS Sta-
tistics for Windows (version 25; IBM Corp., Armonk, NY, 
USA), and a value of P < 0.05 was considered statistically 
significant.

Results
Clinicopathological features
We analyzed SLs from two patients with SPS (Cases #1 
and #2). A man (Case #1) underwent colonoscopy and 
six protruded lesions were detected throughout the 
colon (Fig. 1). We performed endoscopic mucosal resec-
tion (EMR) on all lesions, and SLs (one HP in the trans-
verse colon, three SSLs in the ascending colon, and two 
TSAs in the transverse colon and the sigmoid colon, 
respectively) were diagnosed histopathologically in each 
resected specimen. Case #2 is a woman who underwent 
colonoscopy as part of a routine medical examination, 
and six protruded lesions were detected throughout the 
colon. All lesions were located proximal to the rectum 
(Fig.  1) and were endoscopically resected. Among the 
lesions, five were histologically SSLs (three lesions in the 
transverse colon and two in the descending colon), and 
one was non-SL (tubular adenoma) in the cecum. Both 
two patients were diagnosed with SPS because they met 
the WHO 2019 criteria.

Somatic variant profile of analyzed lesions from patients 
with SPS
The patient in Case #1 exhibited all pathological SL 
types (HP, SSL, and TSA) and we analyzed the DNA 
variant profile of one HP (three SSLs, and one TSA 
(Table 1, Additional file 1: Table S1). When focusing on 
gene variants known to be associated with SLs, a known 
pathogenic variant of BRAF (c.1799 T > A, p.Val600Glu) 
was detected in one SSL located in the ascending colon 

https://www.agilent.com/cs/library/applications/5991-5258EN.pdf
https://www.agilent.com/cs/library/applications/5991-5258EN.pdf
https://geneglobe.qiagen.com/jp/analyze/
https://geneglobe.qiagen.com/jp/analyze/
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(#1–4) and one TSA in the transverse colon (#1–5) 
among the six SLs. One SSL in the ascending colon 
displayed a splice site variant at RNF43 (c.687G > A) 
without any BRAF variant. The SSL with the BRAF 
c.1799 T > A pathogenic variant located in the ascend-
ing colon also displayed the MLH1 variant (c.687G > A, 
p.Val213Glu).

The patient in Case #2 had only one type of SL (three 
SSLs), but it is unique that we could compare the DNA 
profile of three SSLs with that of one non-SL lesion 
(tubular adenoma) (Table 2, Additional file 2: Table S2). 
A known pathogenic variant of BRAF (c.1799  T > A, 
p.Val600Glu) was detected in all SSLs analyzed (#2–1, 
#2–3, and #2–4), whereas we detected another two BRAF 
variants, not known to be pathogenic in the previous 
database, in tubular adenomas of patients. No KRAS or 
RNF43 variants were detected among the four lesions, 
including tubular adenomas. Interestingly, a tubular 
adenoma displayed two pathogenic variants that are 
highly associated with the adenoma-carcinoma sequence 
(APC; c.4249_4265delATT​ATA​AGC​CCC​AGTGA, 
p.Ile1417SerfsTer4, TP53; c.818G > A, p.Arg273His), but 
not the other three SSLs. Among all the nine lesions, we 
detected no lesions with defective MLH1 proteins by 
IHC.

Mutational signature patterns
Mutational signatures (MS) were analyzed by examin-
ing combinations of single base substitutions and further 
including flanking 5’ and 3’ bases of each mutated site. As 
shown in Additional file  3: Table  S3, the most common 
type of single base substitution (SBS) was C > T, followed 
by T > C among nine SSLs. Especially, C > T SBS tended 
to be commonly observed in HP (#1–2) and TSA (#1–5) 
of case 1 and TA (#2–2) of case 2, and T > C occurred in 
one SSL (#2–4) of case 2. It is possible that both non-
SSL serrated legions such as HP, TSA, and non-SLs as 
TA, may be characterized as MS patterns seen by aging. 
Additionally, among nine regions, we observed nine sub-
stitutional sets of CCG > CTG, six sets of TCG > TTG 
and GTG > GAG, and five sets of ACC > AGC and 
GCT > GGT, but a typical MS pattern was not identified 
(Additional file 4: Table S4).

Discussion
Some groups have reported on the molecular character-
istics of various types of serrated lesions. However, the 
collected tumor samples had various genetic germline 
backgrounds and were obtained from patients who were 
subjected to different environmental factors, lifestyles 
and microbiomes. Therefore, molecular analysis should 
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SSL
(T: #2-4)

TA
(C: #2-2)

SSL
(T: NT)

SSL
(D: NT)

Case 1
HP
(T: #1-2)

SSL
(A: #1-1)

SSL
(A: #1-3)

TSA
(T: NT)

TSA
(S: #1-5)
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(A: #1-4)

A
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B
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Fig. 1  Endoscopic/histological features of analyzed lesions. A Case #1. A man who initially exhibited a positive fecal occult blood test (FOBT). He 
underwent colonoscopy and six protruded lesions were detected throughout the colon, and SLs (one HP, three SSLs, and two TSAs) were diagnosed 
histopathologically in each resected specimen. B Case #2. A woman who underwent colonoscopy as part of a routine medical examination, and six 
protruded lesions were detected throughout the colon. Among the lesions, five were histologically SSLs, and one was non-SL (tubular adenoma). 
SSL sessile serrated lesion, HP hyperplastic polyp, TSA traditional serrated adenoma, TA tubular adenoma, A Ascending Colon, T Transverse Colon, S 
Sigmoid Colon, C Cecum, D Descending Colon, NT not tested
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be performed using SLs from patients with identical 
genetic backgrounds. Our study demonstrated that (a) 
favorable DNA samples (≥ 4.0 DIN) can be obtained 
from FFPE tissues stored for 2  years or more to detect 
appropriate somatic DNA profiles using NGS, (b) pure 
somatic SL DNA profiles within a SPS patient were com-
patible with previous SL reports using patients with het-
erogeneous germline genetic backgrounds, and (c) pure 
DNA profiles of TA are quite different from that of other 
SLs within a patient with SPS. To our knowledge, this is 
the first study to demonstrate a pure somatic genetic pro-
file compared among SLs within the same patient.

Many groups have reported the influence of pathologi-
cal genetic variations of BRAF, such as c.1799 T > A and 
p.Val600Glu, on the progression of HPs, SSLs, TSAs, 
and KRAS pathogenic variants for HPs and TSAs, but 
these analyses were performed among patients with het-
erogeneous germline backgrounds [10–13]. To detect 

a pure somatic genetic variation profile, we compared 
the genetic profiles of dome-serrated lesions within the 
same identical patient. In Case #1, a known pathogenic 
variant of BRAF (c.1799 T > A, p.Val600Glu) was detected 
in one SSL (#1–4) and one TSA (#1–5). Previous reports 
have demonstrated that the BRAF variant was found in 
almost all SSLs. Accordingly, we detected the BRAF 
variant in two different SLs in patient #1 [12, 13, 20, 21]. 
When focusing on the two lesions, it is interesting that 
genetic profiles, other than that of the BRAF variant, 
appear quite different (BLM, AXIN2, CDC27, and MLH1 
in #1–4, and RET, ERBB2, STK11, and TCERG1 in #1–5, 
as seen in Additional file 4: Table S4). Therefore, the two 
SLs must be initiated by the common BRAF pathogenic 
variant, followed by progression via the accumulation of 
different genetic profiles, but further accumulated find-
ings should be considered. In Case #2, all SSLs displayed 
pathogenic variants of BRAF (c.1799 T > A, p.Val600Glu), 

Table 1  DNA variant profile (Case #1)

HP hyperplastic polyp, SSL sessile serrated lesion, TSA traditional serrated adenoma, A Ascending Colon, T Transverse Colon, S Sigmoid Colon

Gene DNA variant Amino acid alteration Variant allele frequency (%)
(Bold: VAF > 5%)

#1–0
blood

#1–1
SSL(A)

#1–2
HP(T)

#1–3
SSL(A)

#1–4
SSL(A)

#1–5
TSA(S)

DCC NM_005215.3:c.2277 T > G NP_005206.2:p.Ile759Met 47.3 53.5 54.2 50.8 50.9 54.9
MSH3 NM_002439.4:c.1718G > A NP_002430.3:p.Arg573Lys 51.1 52.9 81.8 42.3 58.6 50
BAX NM_004324.3:c.32G > A NP_004315.1:p.Gly11Glu 35.9 46.7 42.9 45.7 49.5 49.0
SRC NM_005417.4:c.532C > T NP_005408.1:p.Arg178Ter 0 6.0 0 0 0 0

RET NM_020975.4:c.296G > A NP_066124.1:p.Arg99Gln 0 6.7 0 0 0 0

MLH3 NM_001040108.1:c.3769 T > C NP_001035197.1:p.Ser1257Pro 0 11.5 0 0 0 0

TCERG1 NM_006706.3:c.1705G > C NP_006697.2:p.Asp569His 0 25.7 0 0 0 0

BUB1B NM_001211.5:c.898A > C NP_001202.4:p.Met300Leu 0 0 18.8 0 0 0

PALB2 NM_024675.3:c.829G > A NP_078951.2:p.Asp277Asn 0 0 30.0 0 0 0

CHEK2 NM_001005735.1:c.1696C > T NP_001005735.1:p.Arg566Cys 0 0 16.7 0 0 0

CTNNA1 NM_001903.2:c.2281C > T NP_001894.2:p.Arg761Cys 0 0 15.8 0 0 0

TCF7L2 NM_001146274.1:c.1001C > T NP_001139746.1:p.Ser334Leu 0 0 6.2 0 0 0

ATM NM_000051.3:c.5189G > A NP_000042.3:p.Arg1730Gln 0 0 0 7.9 0 0

TP53 NM_000546.5:c.818G > T NP_000537.3:p.Arg273Leu 0 0 0 9.1 0 0

RNF43 NM_017763.4:c.687G > A splicing site 0 0 0 7.4 0 0

BLM NM_000057.2:c.1544delA NP_000048.1:p.Asn515MetfsTer16 0 0 0 0 9.1 0

AXIN2 NM_004655.3:c.1419_1421delCCA​ NP_004646.3:p.His474del 0 0 0 0 6.1 0

CDC27 NM_001114091.1:c.1750A > G NP_001107563.1:p.Ser584Gly 0 0 0 0 5.8 0

CDC27 NM_001114091.1:c.1665 T > G NP_001107563.1:p.Asp555Glu 0 0 0 0 7.4 0

MLH1 NM_000249.3:c.638 T > A NP_000240.1:p.Val213Glu 0 0 0 0 8.3 0

BRAF NM_004333.4:c.1799 T > A NP_004324.2:p.Val600Glu 0 0 0 0 14.7 13.9
RET NM_020975.4:c.2842G > A NP_066124.1:p.Gly948Arg 0 0 0 0 0 6.3
ERBB2 NM_004448.2:c.1295G > A NP_004439.2:p.Arg432Gln 0 0 0 0 0 10.5
ERBB2 NM_004448.2:c.1846 T > C NP_004439.2:p.Phe616Leu 0 0 0 0 0 5.7
STK11 NM_000455.4:c.928C > T NP_000446.1:p.Arg310Trp 0 0 0 0 0 6.7
TCERG1 NM_006706.3:c.2870delA NP_006697.2:p.Lys957ArgfsTer17 0 0 0 0 3.5 11.3
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as expected from previous reports [14]. In addition, it 
is interesting that we detected a somatic APC deletion 
(c.4249_4265delATT​ATA​AGC​CCC​AGTGA) as a driver 
variant (VAF: 55.4%) in TA (#2–2). Notably, the somatic 
genetic profile of the TA was quite different from other 
SSLs within Case #2 (#2–1, #2–3, #2–4), which indi-
cates that the serrated pathway and adenoma-carcinoma 
sequence do not have common driver variants at the ini-
tiation stage, and that the accumulated genetic variant 
profile is distinct between the two pathways.

RNF43 has been reported as one of the key genes when 
pathogenic germline or somatic variants are detected 
in SLs [23, 25, 26]. Giannakis et  al. demonstrated that 
somatic mutations in RNF43 occur in 18.9–17.6% of CRC 
cases, and the majority of RNF43 somatic mutations were 
truncating events. Taken together, it is possible that the 
somatic RNF43 splice-site variant detected in our study 
in SSLs of Case #1 (#1–3) is pathogenic in the serrated 
polyposis-cancer sequence, although additional ques-
tions remain as limitations, such as the existence of two 
hits for the lesion by genetic or epigenetic alteration.

As for epigenetic features in SLs, it has been reported 
that silencing of MLH1 plays an important role in the 
progression of SLs, especially with the BRAF pathogenic 
variant [4, 16], but in our IHC study, no deficiency of 
MLH1 protein could be seen among SLs in two patients 
with SPS. Apparently, this result does not agree with a 
previous report, but it is not clear whether MLH1 was 
silenced to completely suppress the expression of MLH1 
protein. Moreover, it must be noted that previous clini-
cal reports have demonstrated that deficient-MMR has 
not been identified in HPs, TSAs, or SSLs, but has been 
reported in SSL with dysplasia (SSLD) only [21, 27]. 
Additionally, SSLD is the only pre-cancerous colorectal 
lesion in which MLH1 is methylated [28]. Although low 
sensitivity of the IHC cannot be excluded, it is possible 
that MLH1 may have not been methylated yet in SSLs 
without dysplasia. Regarding the occurrence of deficient 
MMR, patients with pre-cancerous lesions, especially 
with SSLD, require careful surveillance after resection.

In conclusion, the identification of a pure 
somatic pathogenic variant of BRAF (c.1799  T > A, 

Table 2  DNA variant profile (Case #2)

SSL sessile serrated lesion, TA tubular adenoma, C Cecum, A Ascending Colon, T Transverse Colon, D Descending Colon

Gene DNA variant Amino acid alteration Variant allele frequency (%)
(Bold: VAF > 5%)

#2–0
Blood

#2–1
SSL(T)

#2–2
TA(C)

#2–3
SSL(D)

#2–4
SSL(T)

BRCA2 NM_000059.3:c.2350A > G NP_000050.2:p.Met784Val 49.3 56.5 46.4 45.5 51.5
BRCA2 NM_000059.3:c.3420 T > A NP_000050.2:p.Ser1140Arg 53.7 52.9 50.0 51.9 50.3
BRCA1 NM_007300.3:c.670 + 1G > T splicing site 58.9 57.1 50.0 55.0 53.5
AXIN2 NM_004655.3:c.2140C > T NP_004646.3:p.Arg714Trp 43.8 44.4 36.7 44.3 49.8
MET NM_001127500.1:c.4141G > A NP_001120972.1:p.Ala1381Thr 48.6 48.4 49.4 46.6 55.8
BRAF NM_004333.4:c.1799 T > A NP_004324.2:p.Val600Glu 0 15.8 0 10.6 9.5
ERBB2 NM_004448.2:c.1846 T > C NP_004439.2:p.Phe616Leu 0 6.6 0 0 0

DMD NM_004006.2:c.8851C > A NP_003997.1:p.Arg2951Ser 0 6.9 0 0 0

APC NM_000038.5:
c.4249_4265delATT​ATA​AGC​CCC​AGTGA​

NP_000029.2:p.Ile1417SerfsTer4 0 0 55.4 0 0

TP53 NM_000546.5:c.818G > A NP_000537.3:p.Arg273His 0 0 27.9 0 0

MSH2 NM_000251.2:c.727C > T NP_000242.1:p.Arg243Trp 0 0 10.5 0 0

CTNNB1 NM_001904.3:c.1267A > T NP_001895.1:p.Ile423Phe 0 0 34.6 0 0

FBXW7 NM_033632.3:c.227A > T NP_361014.1:p.Gln76Leu 0 0 24.5 0 0

BRAF NM_004333.4:c.1781A > G NP_004324.2:p.Asp594Gly 0 0 38.5 0 0

BRAF NM_004333.4:c.1085G > A NP_004324.2:p.Arg362Gln 0 0 26.4 0 0

GALNT12 NM_024642.4:c.1250G > A NP_078918.3:p.Arg417Gln 0 0 22.4 0 0

FGFR3 NM_001163213.1:c.929A > C NP_001156685.1:p.Lys310Thr 0 0 10.3 0 0

FGFR3 NM_001163213.1:c.930 + 5G > C splicing site 0 0 11.5 0 0

CDC27 NM_001114091.1:c.1750A > G NP_001107563.1:p.Ser584Gly 0 0 0 0 6.2
CDC27 NM_001114091.1:c.1060C > A NP_001107563.1:p.Gln354Lys 0 0 0 0 5.5
CDC27 NM_001114091.1:c.1039G > A NP_001107563.1:p.Glu347Lys 0 0 0 0 5.5
CDC27 NM_001114091.1:c.80 T > C NP_001107563.1:p.Leu27Pro 0 0 0 0 5.2
CDC27 NM_001114091.1:c.77 T > C NP_001107563.1:p.Phe26Ser 0 0 0 0 6.5
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p.Val600Glu), which was observed among SLs with an 
identical germline genetic and environmental back-
ground, highlights the importance of this variant as a 
strong contributor for SLs.

Limitations
The present study has several limitations: i) IHC for 
DNA MMR was performed only for pre-cancerous 
lesions and not cancerous lesions, because cancer was 
not found in the two analyzed SPS patients; ii) the ana-
lyzed number of patients with SPS was small; and iii) 
the methylation profile was not evaluated. These find-
ings require further investigation in future studies.
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