

Obstetric admission to intensive care units in Japan: a cohort study using the Japanese Intensive care PAtient Database

メタデータ	言語: English
	出版者: 日本麻酔科学会 = Japanese Society of
	Anesthesiologists
	公開日: 2025-02-26
	キーワード (Ja):
	キーワード (En): Obstetrics, Epidemiology, Maternal
	health, Intensive care unit, Critical care
	作成者: Asaba, Hitomi, Aoki, Yoshitaka, Akinaga,
	Chieko, Naruse, Satoshi, Uchizaki, Sakiko, Nakajima,
	Mikio, Doi, Matsuyuki, Itoh, Hiroaki, Nakajima, Yoshiki
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/0002000338

1	Obstetric admission to intensive care units in Japan: a cohort study using the
2	Japanese Intensive care PAtient Database
3	
4	Hitomi Asaba ¹ , Yoshitaka Aoki ¹ , Chieko Akinaga ¹ , Satoshi Naruse ¹ , Sakiko Uchizaki ¹ ,
5	Mikio Nakajima ^{2,3} , Matsuyuki Doi ¹ , Hiroaki Itoh ⁴ , Yoshiki Nakajima ¹
6	
7	¹ Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University
8	School of Medicine, Shizuoka, Japan
9	² Emergency Life-Saving Technique Academy of Tokyo, Foundation for Ambulance
10	Service Development, Tokyo, Japan
11	³ Department of Clinical Epidemiology and Health Economics, School of Public Health,
12	The University of Tokyo, Tokyo, Japan
13	⁴ Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine,
14	Shizuoka, Japan
15	
16	Corresponding author
17	Yoshitaka Aoki, MD, PhD
18	Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University

19	School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192,
20	Japan
21	Tel.: +81-(0)53-435-2738
22	Fax: +81-(0)53-434-1812
23	Email: ysyaoki27@gmail.com
24	
25	Authors' contributions: HA, YA, and CA substantially contributed to the study design.
26	HA, YA, and MN performed the statistical analyses. HA and YA wrote the manuscript,
27	and CA, SN, SU, MN, MD, HI, and YN were responsible for revising the manuscript. All
28	authors read and approved the final version of the manuscript.
29	Key words: Obstetrics, Epidemiology, Maternal health, Intensive care unit, Critical care
30	Word count of the manuscript: 2499
31	Number of figures: 2
32	Number of tables: 2

34 Abstract

35 Purpose: This study aimed to describe the epidemiology and annual trends of obstetric
36 patients using a multicenter intensive care database.
37 Methods: This multicenter, retrospective cohort study used the Japanese Intensive care

PAtient Database (JIPAD). We included obstetric patients registered in the JIPAD between 2015 and 2020. We investigated the proportion of obstetric patients among all patients in the intensive care unit (ICU). We also described the characteristics, procedures, and outcomes of obstetric patients. In addition, the annual trends were examined by nonparametric tests for trends.

Results: Of the 184,705 patients enrolled in the JIPAD, 750 (0.41%) were obstetric patients from 61 facilities. The median age was 34 years, the number of post-emergency surgeries was 450 (60.0%), and the median APACHE III score was 36. Mechanical ventilation was the most common procedure performed in 247 (32.9%) patients. There were five (0.7%) in-hospital deaths. The proportion of obstetric patients in the ICU did not change between 2015 and 2020 (*P* for trend = 0.32). However, there was a trend for a significant decrease in the severity of illness and length of hospital stay on an annual

- 50 basis between 2015 and 2020. Most patients were admitted to the ICU because of a
- 51 pregnancy-related disorder postoperatively.

52	Conclusion: The proportion of obstetric patients was 0.41% of all ICU admissions. The
53	proportion of obstetric patients admitted to the ICU did not change from 2015 to 2020,
54	but the patients' severity of illness and length of hospital stay significantly decreased over
55	time.

57 Introduction

Pregnancy results in physiological changes that may increase the risk of life-threatening 58 59 obstetric conditions. The World Health Organization reported that approximately 295,000 maternal deaths occurred worldwide in 2017, with 9 critically ill obstetric patients for 60 every maternal death [1,2]. Furthermore, the number of critically ill obstetric patients is 61 62 expected to increase for the following reasons: i) an increased age at labor, ii) increased 63 number of patients who are obese or have chronic medical conditions, iii) increased incidence of multiple pregnancies and adherent placentas resulting from assisted 64 reproduction, and iv) increased rates of labor induction and cesarean delivery [3–9]. 65

66	A national report from the Australian and New Zealand Intensive Care Society
67	(ANZICS) and the Intensive Care National Audit & Research Centre (ICNARC) reported
68	that the proportions of obstetric admissions among all intensive care unit (ICU) patients
69	were 1.3% and 2.1%, respectively [10,11]. A systematic review showed that obstetric
70	patients accounted for approximately 2.2% of all ICU admissions, with Acute Physiology
71	and Chronic Health Evaluation (APACHE) II scores ranging from 4.8 to 40, and obstetric-
72	related diagnoses were the most common [12]. National reports of obstetric patients
73	admitted to the ICU are also available from the United Kingdom, France, the Netherlands,
74	Canada, China, and Australia/New Zealand [10,11,13–16]. However, there have been no

75	reports on the epidemiology of critically ill obstetric patients admitted to the ICU in Japan.
76	Japanese epidemiology may differ from that in other countries because of differences in
77	social and medical systems surrounding obstetric care (e.g., national health insurance and
78	the majority of deliveries being at small primary hospitals), management protocols in
79	obstetric units, ICU admission criteria, and availability of ICU beds [17,18].
80	The Japanese Intensive care PAtient Database (JIPAD) was established in 2014
81	to obtain data on patients who are admitted to the ICU. We conducted a cohort study using
82	this Japanese ICU database to describe the epidemiology of critically ill obstetric patients
83	who require intensive care in Japan.
84	
85	Methods
86	This multicenter, observational study was based on the JIPAD [19]. This study was
87	approved by the Ethics Review Board of Hamamatsu University School of Medicine
88	(approval number, 21-225) and the JIPAD working group. The requirement for
89	informed consent was waived because of the anonymous nature of the data.
90	Data source
91	The JIPAD is the largest domestic database of critically ill patients in Japan, and it has
92	been managed by the Japanese Society of Intensive Care Medicine since 2014 [19]. The

93	definition of ICU included in the JIPAD entails a designated unit where a minimum of
94	one physician is present for 24 hours each day, and where the admission fee for the
95	emergency and critical care center, the specific ICU management fee, or the pediatric
96	specific ICU management fee is calculated. Data were collected from each facility using
97	Filemaker Pro TM (File Maker Inc., Santa Clara, CA, USA) and anonymized upon
98	transfer to the central department. The JIPAD collects diagnoses, admission routes, vital
99	signs, severity scores, procedure details, complications, and discharge status under the
100	responsibility of the clinicians involved in daily care at each facility. The JIPAD shares
101	common codes with the Australian and New Zealand Intensive Care Society Adult
102	Patient Database (ANZICS-APD) and the Intensive Care National Audit & Research
103	Centre Case Mix Programme (ICNARC-CMP; a database covering the region of
104	England, Wales, and Northern Ireland). This sharing of codes allows for comparing
105	patient data across different regions and countries, and helps to ensure that the JIPAD
106	adheres to global standards. A system of regular data audits has also been incorporated
107	to maintain the quality of the JIPAD. Investigators are granted access to the dataset
108	upon approval of their request by the JIPAD working group.
109	Patients' selection and outcomes

110 We included women aged 15–49 years among patients registered in the JIPAD between

111	the fiscal years of 2015 and 2020 on the basis of a previous study [10]. We identified
112	obstetric patients using pregnancy-related codes (pregnancy-related disorders
113	postoperatively, postpartum hemorrhage, and pre-eclampsia or pregnancy-induced
114	hypertension nephropathy) and by the diagnosis that was freely entered as Japanese
115	texts. The exclusion criteria were as follows: i) ICU re-admission, ii) admission from
116	another ICU, iii) admission to the ICU for a procedure, and iv) missing values.
117	We investigated the proportion of obstetric patients among all ICU admissions.
118	We also examined the background characteristics, procedures, and outcomes of
119	obstetric patients. Furthermore, annual trends in obstetric patients' representative
120	characteristics, procedures, and outcomes were investigated. Finally, the diagnostic
121	categories of obstetric patients were analyzed. The diagnostic categories were classified
122	using the disease names registered in the JIPAD dictionary (APACHE III compliant)
123	and were determined by selecting the most applicable disease name to the ICU
124	admission by the physician in charge at each facility.
125	Variables
126	The patients' characteristics included the fiscal year on admission, age, weight, height,
127	body mass index, chronic comorbidities (acquired immune deficiency syndrome,
128	congestive heart failure, respiratory failure, cirrhosis, use of immunosuppressants,

129	hemodialysis, acute leukemia or lymphoma, and cancer with metastases), type of ICU
130	admission (emergency surgery, non-surgical, and planned surgery), location before ICU
131	admission (e.g., operating room, emergency department, general ward, and other
132	hospital), emergency response admission (none, medical emergency team/rapid
133	response team, and code blue), cardiopulmonary resuscitation prior to ICU admission,
134	APACHE III score, APACHE II score, Japan Risk of Death (JROD) score, and type of
135	hospital (university, public, and private). Procedures during the ICU included
136	mechanical ventilation, noninvasive positive pressure ventilation, high-flow nasal
137	cannula, intra-aortic balloon pumping, extracorporeal membrane oxygenation (veno-
138	arterial and veno-venous), and renal replacement therapy (continuous and intermittent).
139	Outcomes consisted of the discharge status (discharge to home, discharge to other
140	facilities, and in-hospital death), ICU mortality, length of hospital stay, and length of
141	ICU stay. The JROD score is a variant of the APACHE III score. The JROD score
142	shows an enhanced predictive capability for in-hospital mortality in the Japanese
143	population, as previously reported [21].
144	Statistical analysis
145	Categorical data are shown as the number (percentage), and continuous data are shown

146 as the median (interquartile range [IQR]). The proportion of obstetric patients was

147	calculated each year, with corresponding 95% confidence intervals (95% CIs) using the
148	Clopper-Pearson test. To assess annual trends during the study period, we used the
149	Cochrane–Armitage test for proportions and the Cuzick test for continuous variables.
150	Two-sided P values of < 0.05 were considered significant. All analyses were performed
151	using Stata/BE 17 (STATA Corp, College Station, TX, USA).
152	
153	Results
154	During the study period, 184,705 patients from 70 facilities were registered in the JIPAD.
155	After applying the inclusion and exclusion criteria, 750 patients were eligible for analyses
156	(Figure 1). The 750 obstetric patients were registered from 61 facilities. The number of
157	obstetric patients per facility, stratified by the fiscal year of admission, is shown in Online
158	Resource 1.
159	Table 1 shows the characteristics, procedures, and outcomes of obstetric patients
160	admitted to the ICU. The study cohort had a median age of 34 years (IQR, 30-38 years).
161	Twenty (2.7%) patients had chronic comorbidities. Emergency surgery was the most
162	frequently encountered type of admission with 450 (60.0%) patients, and the operating
163	room was the most common location before ICU admission with 525 (70.0%) patients.

The median APACHE III score was 36 (IQR, 28-46), the median APACHE II score was 164

10.5 (IQR, 8–13), and the median JROD was 0.47% (IQR, 0.23%–0.98%). University
hospitals were the most common type of hospital in which patients were registered.
Mechanical ventilation was the most frequently performed procedure and was carried out
in 247 (32.9%) patients. There were five (0.7%) in-hospital deaths and three (0.4%) ICU
deaths. The median length of the hospital stay was 10 days (IQR, 7–19 days), and the
ICU stay was 1 day (IQR, 1–3 days).

171 Figure 2 shows the annual trends in the proportion of obstetric patients among 172 all ICU admissions. The proportion of obstetric patients did not exhibit a significant 173 change over time (P for trend = 0.32). Table 2 shows the annual trends in the 174 representative characteristics, procedures, and outcomes of obstetric patients. The 175 APACHE III and the JROD scores significantly decreased during the study period (P for trend = 0.021 and < 0.001, respectively), although age and body mass index did not 176 177 significantly change. The use of mechanical ventilation was decreased, and the length of 178 hospital stay was decreased among the outcomes (P for trend = 0.013 and 0.023, 179 respectively).

180 **Online Resource 2** shows the diagnostic categories of obstetric patients 181 admitted to the ICU. A pregnancy-related disorder postoperatively was the most common 182 diagnosis at ICU admission, and postpartum hemorrhage was the second most common 183 diagnosis in all of the years.

Discussion

184

100	
186	Using a multicenter intensive care database, we examined a cohort of obstetric patients
187	admitted to the ICU from 2015 to 2020 in Japan. A total of 750 obstetric patients from 61
188	facilities were registered, representing 0.41% of all ICU patients. There were five (0.7%)
189	in-hospital deaths. The proportion of obstetric patients admitted to the ICU did not change
190	over time. However, the severity of the patients' condition, use of mechanical ventilation,
191	and length of hospital stay significantly decreased annually over the study period. Most
192	patients were admitted to the ICU because of a pregnancy-related disorder postoperatively.
193	The proportion of obstetric admission among all ICU admissions did not
194	change over the study period. This result is consistent with earlier international studies,
195	which showed that the proportion of obstetric patients is relatively low and stable
196	[10,11,13–16]. In contrast, the proportion of obstetric admissions among all ICU
197	admissions in Japan (0.41%) is lower than that reported by the ICNARC (2.1%) and by
198	the ANZICS (1.3%) [10,11]. It is crucial to exercise caution when interpreting the
199	results of this study, owing to the variations in admission criteria across countries. The
200	relatively small proportion of obstetric patients in the present study suggests that there is

201 potential for optimizing ICU resource allocation.

202	The number of in-hospital deaths in the present study was five (0.7%) among
203	obstetric patients admitted to ICUs in Japan. The mortality rates for obstetric ICU
204	patients reported by the ICNARC and the ANZICS and in Canada were 2.7%, 0.7%,
205	and 1.3%, respectively [10,11,15]. Systematic reviews have shown that the maternal
206	mortality rate ranges from 0% to 33% among obstetric patients admitted to ICUs, with
207	considerable variability depending on the country and year of study [12]. Notably,
208	despite Japan's reputation for having one of the lowest maternal mortality among
209	developed countries, this study's interpretation of mortality should be approached with
210	caution [21].
211	The mortality rate in the present study was lower than that in previous reports
212	conducted in the same study period in Japan. The Ministry of Health, Labour and
213	Welfare in Japan has been conducting a "Model Project on Investigation and Evaluation
214	of Maternal Deaths" since 2006, which reported a total of 204 maternal deaths from
215	2015 to 2020 [22]. Additionally, the Japan Society of Obstetrics and Gynecology
216	reported a total of 253 maternal deaths from 2015 to 2020 [23]. The reason for this
217	discrepancy in the number of deaths between the present study and previous reports
218	may be as follows: i) approximately half of the deliveries in Japan are performed in

219	clinics, and patients may die before reaching the ICU, and ii) the JIPAD does not cover
220	all of the ICUs, such as maternal-fetal ICUs and emergency ICUs, in Japan. We
221	acknowledge that the ICUs included in the present study were designed for intensivists
222	to deliver comprehensive care, with exclusion of maternal-fetal ICUs under the
223	management of obstetricians.
224	The severity of the patients' condition and the length of hospital stay
225	significantly decreased annually from 2015 to 2020 in the present study. To the best of
226	our knowledge, this is the first study to examine the severity of illness and treatment in
227	the ICU in Japan. Half (52%) of the maternal fatalities in Japan lacked inter-facility
228	transportation [23]. In response to this issue, the Japan Maternal Emergency Rescue
229	System Implementation Council was established in 2015 to advocate for standard
230	maternal life-saving measures, such as early maternal transportation [24]. This scheme
231	may have contributed to the reduction in the severity of obstetric ICU patients in Japan.
232	The primary reason for ICU admission was postoperative pregnancy-related
233	disorders, such as cesarean section, ectopic pregnancy, adherent placenta, and other
234	pregnancy-related surgeries, which comprised 74% of ICU admissions in this study. The
235	rate of obstetric critical hemorrhage has decreased since 2010, but there was a slight
236	increase from 2019 to 2021, possibly due to changes in underlying conditions (e.g., a

237	decrease in amniotic fluid embolism and an increase in an adherent placenta) [23,25].
238	An increase in an adherent placenta may also be associated with increased assisted
239	reproductive pregnancies [26]. Similarly, the prevalence of postpartum hemorrhage is
240	increasing in other countries because of an adherent placenta and the advancing age of
241	pregnant women [27,28]. These trends should be closely monitored in the future.
242	We acknowledge some limitations to this study, even though this is the first
243	obstetric epidemiological study in Japan to analyze the largest ICU database in Japan
244	with more than 180,000 registered patients. First, the JIPAD differs from the ANZICS-
245	APD and the ICNARC-CMP in some details. The JIPAD does not implement
246	measurement codes for pregnancy. Therefore, with non-pregnancy-related disease
247	codes, data for all obstetric patients admitted to the ICU may not be available. Second,
248	the JIPAD does not include measurements, such as blood loss, transfusion volume, and
249	the fetal status, which are specific to obstetric patients. The ICNARC-CMP collects
250	obstetric variables, such as gestational age, mode of delivery, and fetal and neonatal
251	outcomes [11]. We hope that these measurements will be added to the JIPAD in the
252	future. Third, many facilities registered in the JIPAD are university hospitals with many
253	beds and many intensivists, which may not represent ICUs in Japan. In addition, the
254	JIPAD includes ICUs representing each facility. However, if there are other units (e.g.,

255	maternal-fetal ICUs and emergency ICUs) at the same facility, pregnant women
256	admitted to other units may not be registered in the JIPAD. Fourth, most national reports
257	from other countries show ICU admission rates per 1000 deliveries. However, not all
258	Japanese ICUs are registered in the JIPAD. Therefore, the ICU admission rate per 1000
259	deliveries could not be calculated. Finally, ICU admission is a helpful indicator of
260	severe maternal morbidity, but is limited by regional variations in the availability of
261	ICU beds and the admission criteria across different countries. To address this
262	limitation, we intend to conduct further epidemiological research on maternal healthcare
263	in Japan, utilizing alternative databases with more comprehensive coverage. Despite the
264	aforementioned limitations, this present study on maternal healthcare in Japan has
265	various advantages, including severity scores and detailed intervention information.
266	
267	Conclusions
268	In this study, there were 750 obstetric patients from 61 facilities registered in
269	the JIPAD, representing 0.41% of all ICU patients. The severity of the patients'
270	condition and length of hospital stay significantly decreased annually from 2015 to
271	2020. Most patients were admitted to the ICU because of a pregnancy-related disorder
272	postoperatively.

273

274 Acknowledgments

- 275 We thank Ellen Knapp, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of
- this manuscript.

278 References

- 1. Trends in Maternal Mortality: 2000 to 2017 [Internet]. [cited 2022 Jul 3]. Available
 from: https://www.unfpa.org/featured-publication/trends-maternal-mortality-2000-2017

281 2. Cantwell R, Clutton-Brock T, Cooper G, Dawson A, Drife J, Garrod D, et al. Saving

282 Mothers' Lives: Reviewing maternal deaths to make motherhood safer: 2006-2008. The

283 Eighth Report of the Confidential Enquiries into Maternal Deaths in the United Kingdom.

- 284 BJOG. 2011;118 Suppl 1:1–203.
- 3. Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best
 Pract Res Clin Obstet Gynaecol. 2021;70:2–9.
- 287 4. Paredes C, Hsu RC, Tong A, Johnson JR. Obesity and Pregnancy. Neoreviews.
 288 2021;22:e78–87.
- 5. Leffert LR, Clancy CR, Bateman BT, Bryant AS, Kuklina EV. Hypertensive disorders
 and pregnancy-related stroke: frequency, trends, risk factors, and outcomes. Obstet
 Gynecol. 2015;125:124–31.
- 6. Faulkes RE, Chauhan A, Knox E, Johnston T, Thompson F, Ferguson J. Review article:
 chronic liver disease and pregnancy. Aliment Pharmacol Ther. 2020;52:420–9.
- 7. Koratala A, Bhattacharya D, Kazory A. Chronic Kidney Disease in Pregnancy. South
 Med J. 2017;110:578–85.
- 8. Sunderam S, Kissin DM, Crawford S, Anderson JE, Folger SG, Jamieson DJ, et al.
 Assisted reproductive technology surveillance -- United States, 2010. MMWR Surveill
 Summ. 2013;62:1–24.
- 9. Morlando M, Collins S. Placenta Accreta Spectrum Disorders: Challenges, Risks, and
 Management Strategies. Int J Womens Health. 2020;12:1033–45.
- 10. Maiden MJ, Finnis ME, Duke GJ, Huning E, Crozier T, Nguyen N, et al. Obstetric
 admissions to intensive care units in Australia and New Zealand: a registry-based cohort
 study. BJOG. 2020;127:1558–67.
- 304 11. ICNARC Obstetrics [Internet]. [cited 2022 Jul 3]. Available from:
 305 https://www.icnarc.org/Our-Audit/Audits/Cmp/Our-National-Analyses/Obstetrics
- 306 12. Pollock W, Rose L, Dennis C-L. Pregnant and postpartum admissions to the intensive

307 care unit: a systematic review. Intensive Care Med. 2010;36:1465–74.

308 13. Chantry AA, Deneux-Tharaux C, Bonnet M-P, Bouvier-Colle M-H. Pregnancy-

Related ICU Admissions in France: Trends in Rate and Severity, 2006–2009*. Critical
Care Medicine. 2015;43:78–86.

311 14. Zwart JJ, Dupuis JRO, Richters A, Ory F, van Roosmalen J. Obstetric intensive care

- unit admission: a 2-year nationwide population-based cohort study. Intensive Care Med.
- 313 2010;36:256–63.

15. Aoyama K, Pinto R, Ray JG, Hill AD, Scales DC, Lapinsky SE, et al. Variability in
intensive care unit admission among pregnant and postpartum women in Canada: a
nationwide population-based observational study. Crit Care. 2019;23:381.

317 16. Zhao Z, Han S, Yao G, Li S, Li W, Zhao Y, et al. Pregnancy-Related ICU Admissions
318 From 2008 to 2016 in China: A First Multicenter Report. Crit Care Med. 2018;46:e1002–
319 9.

320 17. [Internet]. [cited 2022 Jul 3]. Available from: https://www.e321 stat.go.jp/dbview?sid=0003411600

18. OECD Health Statistics 2021 - OECD [Internet]. [cited 2022 Jul 3]. Available from:
https://www.oecd.org/els/health-systems/health-data.htm

19. Irie H, Okamoto H, Uchino S, Endo H, Uchida M, Kawasaki T, et al. The Japanese
Intensive care PAtient Database (JIPAD): A national intensive care unit registry in Japan.
J Crit Care. 2020;55:86–94.

20. Wanderer JP, Leffert LR, Mhyre JM, Kuklina EV, Callaghan WM, Bateman BT.
Epidemiology of Obstetric-Related ICU Admissions in Maryland: 1999–2008*. Critical
Care Medicine. 2013;41:1844–52.

WHO-RHR-19.23-eng.pdf [Internet]. [cited 2022 Jul 5]. Available from:
https://apps.who.int/iris/bitstream/handle/10665/327596/WHO-RHR-19.23eng.pdf?sequence=13&isAllowed=y

333 22. 15_all.pdf [Internet]. [cited 2022 Dec 29]. Available from:
334 https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei21/dl/15_all.pdf

335 23. botai_2021.pdf [Internet]. [cited 2022 Dec 28]. Available from:

- 336 https://www.jaog.or.jp/wp/wp-content/uploads/2022/06/botai_2021.pdf
- 337 24. [Internet]. [cited 2022 Dec 29]. Available from: https://www.j-cimels.jp/
- 338 25. Hasegawa J, Katsuragi S, Tanaka H, Kurasaki A, Nakamura M, Murakoshi T, et al.
- 339 Decline in maternal death due to obstetric haemorrhage between 2010 and 2017 in Japan.
 340 Sci Rep. 2019;9:11026.
- 26. Matsuzaki S, Ueda Y, Nagase Y, Matsuzaki S, Kakuda M, Kakuda S, et al. Placenta
 Accreta Spectrum Disorder Complicated with Endometriosis: Systematic Review and
 Meta-Analysis. Biomedicines. 2022;10:390.
- 27. Knight M, Callaghan WM, Berg C, Alexander S, Bouvier-Colle M-H, Ford JB, et al.
 Trends in postpartum hemorrhage in high resource countries: a review and
 recommendations from the International Postpartum Hemorrhage Collaborative Group.
 BMC Pregnancy Childbirth. 2009;9:55.
- 28. Kuriya A, Piedimonte S, Spence AR, Czuzoj-Shulman N, Kezouh A, Abenhaim HA.
 Incidence and causes of maternal mortality in the USA. J Obstet Gynaecol Res.
 2016;42:661–8.
- 351

352	Table 1. Characteristics, procedures, and outcomes of obstetric patients admitted to
353	the ICU.

	Obstetric patients $(n = 750)$
Characteristics	<u> </u>
Age, years	34 [30–38]
Weight, kg	59.8 [53.7–66.8]
Height, cm	158 [154–162]
Body mass index, kg/m ²	23.9 [21.6–26.5]
Chronic comorbidities	
Acquired immune deficiency syndrome	0
Congestive heart failure	3 (0.4)
Respiratory failure	1 (0.1)
Cirrhosis	0
Use of immunosuppressants	11 (1.5)
Hemodialysis	2 (0.3)
Acute leukemia or lymphoma	0
Cancer with metastases	3 (0.4)
Type of ICU admission	
Emergency surgery	450 (60.0)
Non-surgical	184 (24.5)
Planned surgery	116 (15.5)
Location before ICU admission	
Operating room	525 (70.0)
Emergency department	121 (16.1)
General ward	93 (12.4)
Other hospital	11 (1.5)
Emergency response admission	
None	714 (95.2)
MET/RRT	26 (3.5)
Code blue	10 (1.3)
Cardiopulmonary resuscitation prior to ICU admission	3 (0.4)

APACHE III score	36 [28-46]
APACHE III risk of death, %	2.9 [1.6–5.0]
APACHE II score	10.5 [8–13]
APACHE II risk of death, %	16.1 [11.0–22.9]
JROD score, %	0.47 [0.23–0.98]
Type of hospital	
University hospital	551 (73.5)
Public hospital	100 (13.3)
Private hospital	99 (13.2)
Procedures	
Mechanical ventilation	247 (32.9)
Noninvasive positive pressure ventilation	18 (2.4)
High-flow nasal cannula	20 (2.7)
Intra-aortic balloon pumping	2 (0.3)
Veno-arterial ECMO	5 (0.7)
Veno-venous ECMO	1 (0.1)
Continuous renal replacement therapy	6 (0.8)
Intermittent renal replacement therapy	5 (0.7)
Outcomes	
Discharge status	
Discharge to home	683 (91.1)
Discharge to other facilities	62 (8.3)
In-hospital death	5 (0.7)
ICU mortality	3 (0.4)
Length of hospital stay	10 [7–19]
Length of ICU stay	1 [1–3]

- 354 ICU, intensive care unit; MET, medical emergency team; RRT, rapid response team; APACHE, Acute
- 355 Physiology and Chronic Health Evaluation; JROD, Japan Risk of Death; ECMO, extracorporeal356 membrane oxygenation.
- 357 Data are shown as the number (%) or median [interquartile range].
- 358

	2015 (n = 18)	2016 (n = 68)	2017 (n = 97)	2018 (n = 159)	2019 (n = 184)	2020 (n = 224)	P for trend
Characteristics							
Age, years	32 [27–37]	34 [29.5–38]	34 [30–38]	34 [30–39]	34.5 [30.5–37.5]	34 [30–37]	0.40
Body mass index, kg/m ²	25.3 [21.9–27.5]	24.0 [21.5–27.0]	23.3 [21.2–26.2]	24.8 [22.7–27.2]	23.7 [21.6–26.3]	23.2 [21.3–26.4]	0.15
APACHE III score	36.5 [31–50]	40 [32.5–48]	36 [27-46]	36 [30-47]	36 [28-46]	35 [27-44]	0.021
APACHE III risk of death, %	3.2 [2.5–5.6]	4.3 [2.3–7.5]	2.8 [1.5-4.8]	2.9 [1.7–5.2]	2.8 [1.5–5.0]	2.7 [1.5–4.3]	0.0011
JROD score, %	0.7 [0.5–1.3]	0.7 [0.3–1.6]	0.6 [0.3–1.0]	0.5 [0.2–1.1]	0.5 [0.2–1.1]	0.4 [0.2–0.8]	< 0.001
Activation of MET/RRT	0	2 (2.9)	7 (7.2)	4 (2.5)	10 (5.4)	3 (1.3)	0.32
Procedures							
Mechanical ventilation	7 (38.9)	31 (45.6)	38 (39.2)	52 (32.7)	48 (26.1)	70 (31.7)	0.013
Outcomes							
Hospital mortality	1 (5.6)	0	0	2 (1.3)	0	2 (0.9)	0.68
ICU mortality	1 (5.6)	0	0	1 (0.6)	0	1 (0.5)	0.32
Length of hospital stay	11 [9–15]	15.5 [8-48.5]	9 [7–16]	11 [8–21]	10 [8–17]	10 [7–16]*	0.023
Length of ICU stay	1 [1–2]	2 [1–3]	1 [1–3]	1 [1–2]	2 [1–3]	1 [1–3]	0.38

Table 2. Annual trends in representative characteristics, procedures, and outcomes of obstetric patients.

APACHE, Acute Physiology and Chronic Health Evaluation; JROD, Japan Risk of Death; MET, medical emergency team; RRT, rapid response team; ICU, intensive care unit.

Data are shown as the number (%) or median [interquartile range].

*One patient with a length of hospital stay of 12,346 days was excluded as an input error.

Figure legends

Figure 1. Study flowchart.

JIPAD, Japanese Intensive care PAtient Database; ICU, intensive care unit.

Figure 2. Annual trends in the proportion of obstetric patients among all intensive care unit admissions.

Online Resources

Online Resource 1. Number of obstetric patients per facility stratified by the fiscal year of admission.

Lines in the box represent median values and box edges represent 25th to 75th percentiles.

Online Resource 2. Diagnostic categories of obstetric patients admitted to the intensive care unit.

Figure 1

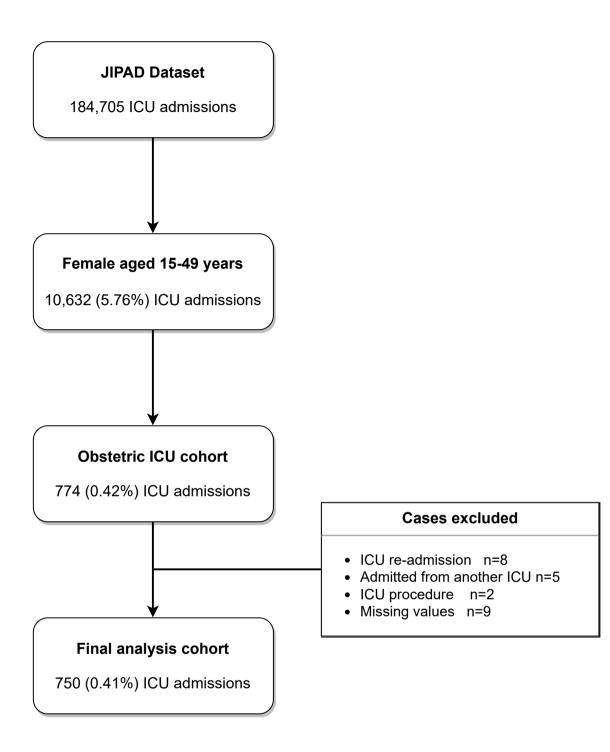
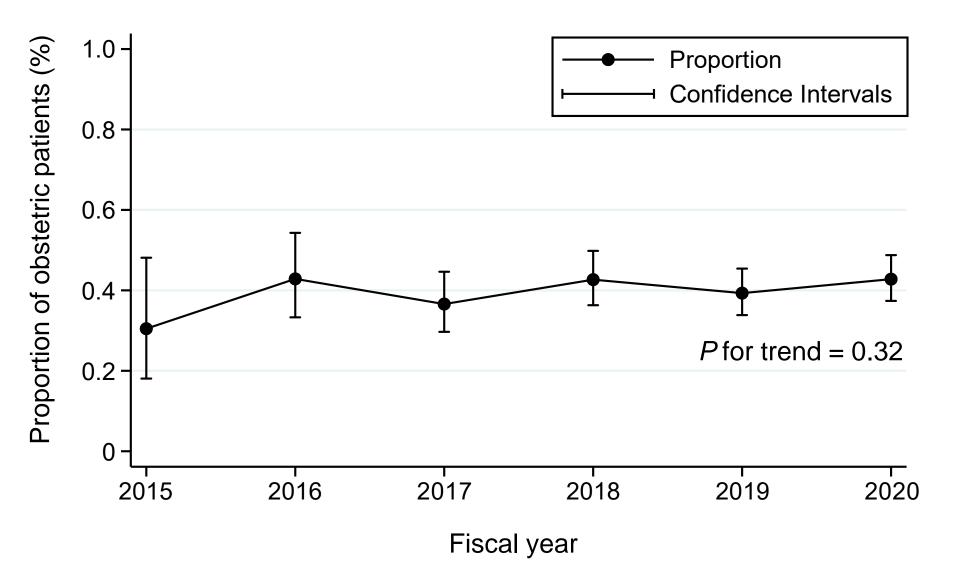
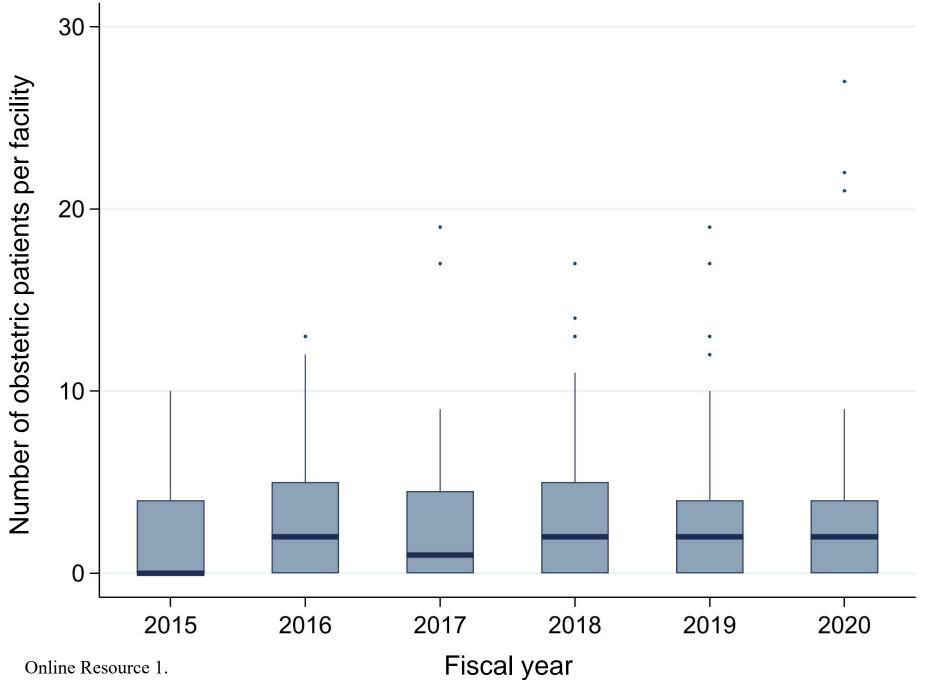




Figure 2

Online Resource 1.

	2015	2016	2017	2018	2019	2020	Total
	(N = 18)	(N = 68)	(N = 97)	(N = 159)	(N = 184)	(N = 224)	(N = 750)
Obstetric diagnosis							
Pregnancy-related disorder postop	16 (88.9)	50 (73.5)	68 (70.1)	126 (78.3)	133 (72.3)	165 (73.7)	558 (74.4)
Postpartum hemorrhages	1 (5.6)	12 (17.7)	19 (19.6)	26 (16.4)	36 (19.6)	46 (20.5)	140 (18.7)
Pre-eclampsia or pregnancy- induced hypertension nephropathy	1 (5.6)	3 (4.4)	1 (1.0)	3 (1.9)	8 (4.4)	1 (0.5)	17 (2.3)
Non-obstetric diagnosis							
Respiratory	0	1 (1.5)	0	0	1 (0.5)	1 (0.5)	3 (0.4)
Cardiovascular	0	0	2 (2.0)	2 (1.3)	0	2 (0.9)	6 (0.8)
Sepsis	0	0	1 (1.0)	0	2 (1.1)	1 (0.5)	4 (0.5)
Neurological	0	1 (1.5)	2 (2.0)	1 (0.6)	0	1 (0.5)	5 (0.7)
Metabolic	0	0	0	0	0	3 (1.3)	3 (0.4)
Gastrointestinal	0	0	2 (2.0)	1 (0.6)	0	0	3 (0.4)
Gynecological	0	1 (1.5)	2 (2.0)	0	2 (1.1)	3 (1.3)	8 (1.0)
Renal	0	0	0	0	0	1 (0.5)	1 (0.1)
Trauma	0	0	0	0	0	0	0
Hematological	0	0	0	0	0	0	0
Musculoskeletal/Skin	0	0	0	0	1 (0.5)	0	1 (0.1)
Other/Undefined	0	0	0	0	1 (0.5)	0	1 (0.1)

Online Resource 2. Diagnostic categories of obstetric patients admitted to the intensive care unit.

The values given are number (column %).