



Rate-dependent elevation of the capture threshold after implantation of a leadless pacemaker

| メタデータ | 言語: English                                       |
|-------|---------------------------------------------------|
|       | 出版者: John Wiley and Sons                          |
|       | 公開日: 2025-02-26                                   |
|       | キーワード (Ja):                                       |
|       | キーワード (En): capture threshold, leadless           |
|       | pacemaker, phase 4 block                          |
|       | 作成者: Sano, Makoto, Takahashi, Naoyuki, Kaneko,    |
|       | Yutaro, Narumi, Taro, Naruse, Yoshihisa, Maekawa, |
|       | Yuichiro                                          |
|       | メールアドレス:                                          |
|       | 所属:                                               |
| URL   | http://hdl.handle.net/10271/0002000343            |

| 1  | Rate-dependent elevation of the capture threshold after implantation          |
|----|-------------------------------------------------------------------------------|
| 2  | of a leadless pacemaker                                                       |
| 3  |                                                                               |
| 4  | Makoto Sano, MD, PhD; Naoyuki Takahashi, MD; Yutaro Kaneko, MD; Taro Narumi,  |
| 5  | MD, PhD; Yoshihisa Naruse, MD, PhD, Yuichiro Maekawa, MD, PhD.                |
| 6  |                                                                               |
| 7  | Division of Cardiology, Internal Medicine III, Hamamatsu University School of |
| 8  | Medicine, Hamamatsu, Japan.                                                   |
| 9  |                                                                               |
| 10 | Correspondence and Address:                                                   |
| 11 | Makoto Sano, MD, PhD                                                          |
| 12 | Division of Cardiology, Internal Medicine III, Hamamatsu University School of |
| 13 | Medicine, Hamamatsu, Japan                                                    |
| 14 | Address: 1-20-1 Handayama, Higashi-ward, Hamamatsu, 431-3192, Japan           |
| 15 | TEL: +81-53-435-2267, FAX: +81-53-434-2910                                    |
| 16 | E-mail: makosano@hama-med.ac.jp                                               |
| 17 |                                                                               |
| 18 | Word counts: 1136                                                             |
| 19 | Conflict of interest disclosures: None                                        |

**Keywords:** capture threshold, leadless pacemaker, phase 4 block

#### 21 Abbreviations

22 ECG, electrocardiogram

23 AV, atrioventricular

24 RV, right ventricle

25 ppm, paces/min

26

#### 27 Abstract

28 The procedural success in the implantation of cardiac electric devices depends on both 29 the implanted position and the electric performance. The capture threshold and the 30 pacing output affect the estimated battery longevity. In a case with a high capture 31 threshold, recapture and reimplantation of a leadless pacemaker are commonly 32 recommended. We experienced a case with the rate-dependent elevation of the capture 33 threshold following the implantation of a leadless pacemaker. The recognition of the 34 rate-dependency of the capture threshold and the acceptable programming could avoid 35 the unnecessary recapture and reimplantation of that, avoiding the increase of 36 procedural risks.

37 Case report

38 A 77-year-old man who had a history of hypertension, cerebral infarction, and chronic

39 renal failure on hemodialysis presented bradycardia with less than 40 beats/min and

40 hypotension with disdialysis syndrome. Twelve-lead electrocardiogram (ECG) showed

41 an advanced atrioventricular (AV) block with 6:1 AV conduction and ventricular escape

42 beats (Figure 1). Echocardiography demonstrated concentric left ventricular

43 hypertrophy with normal left ventricular systolic function without valvular diseases.

44 The patient took no medication with negative dromotropic effects and had normal

2

| 45 | electrolyte metabolism on a blood examination test. The preceding ECG a month had                                |
|----|------------------------------------------------------------------------------------------------------------------|
| 46 | demonstrated 1:1 AV conduction with a complete right ventricular block and left                                  |
| 47 | anterior fascicular block. Collectively, the etiology of advanced AV block was                                   |
| 48 | suggested in the primary AV conduction block. Taking the cardiac electric devices                                |
| 49 | infection risk and AV synchrony into account, the implantation of a leadless pacemaker                           |
| 50 | of Micra AV <sup>TM</sup> (Medtronic, Minneapolis, MN) was chosen through the discussion with                    |
| 51 | the patient and his family. The requirement for written informed consent to the                                  |
| 52 | institutional registry was waived by the local ethics board of the institution given the                         |
| 53 | retrospective nature of the registry.                                                                            |
| 54 | Vascular access was obtained via the right femoral vein. The delivery sheath                                     |
| 55 | was inserted into the right ventricle (RV). Right ventriculography visualized the RV                             |
| 56 | anatomy and the direction of the septum. The 1 <sup>st</sup> . and 2 <sup>nd</sup> . attempts of implantation in |
| 57 | the RV septum showed high capture thresholds of $>2V/0.24$ ms only at a pacing rate of                           |
| 58 | 60 paces/min (ppm), regardless of adequate 2-tine fixation. Then, we attempted a 3 <sup>rd</sup> . re-           |
| 59 | location. Finally, the Micra AV <sup>TM</sup> was implanted in the mid-septum of the RV on the 3 <sup>rd</sup>   |
| 60 | attempt with the 2-tine fixation (Figure 2). After the pull-and-hold test, the electric                          |
| 61 | performance tests were performed in VVI (single ventricular demand pacing) mode. R-                              |
| 62 | wave amplitude was $>5$ mV and the impedance was 500-600 ohms. The capture                                       |
| 63 | threshold was rate-dependently changing, which was 1.75V/0.24ms at a pacing rate of                              |
| 64 | 60 paces/min and 0.75V/0.24ms at 80 ppm (Figure 3A and 3B). The programming at a                                 |
| 65 | pacing rate of 70 ppm (over 60 ppm) was acceptable since the rate of sinus rhythm was                            |
| 66 | over 60 beats/min. Hence, the tether was removed, avoiding unnecessary procedural                                |
| 67 | risks of recapture and reimplantation. The rate-dependent change of the capture                                  |
| 68 | threshold was not changed immediately after the procedure. No loss of capture at a                               |

| 69 | pacing rate of 70 ppm and 2.5V/0.24ms was observed within five days after the                    |
|----|--------------------------------------------------------------------------------------------------|
| 70 | implantation. Subsequently, the interrogation tests were performed again. R-wave                 |
| 71 | amplitude (>5 mV) and the impedance were stable. The rate-dependent change of the                |
| 72 | capture threshold disappeared; that was $0.5V/0.24ms$ at a pacing rate of both 50 ppm            |
| 73 | and 80 ppm (Figure 3A). The final programming was set in VDD (atrial mechanical                  |
| 74 | sensing and ventricular pacing) mode at a rate of 50-105 ppm, which resulted in AV               |
| 75 | synchronous pacing with low pacing output functioning as a capture management mode.              |
| 76 | Discussion                                                                                       |
| 77 | Rate-dependent elevation of the capture threshold has been rarely reported during an             |
| 78 | early phase after pacemaker implantation <sup>1,2</sup> . The previous reports focused on the    |
| 79 | bradycardia-dependent rise in the atrial capture threshold and the possible mechanism of         |
| 80 | phase 4 block <sup>1,2</sup> . The phase 4 block was caused by the loss of capture during the    |
| 81 | refractory period formed by slow diastolic depolarization. The mechanisms of slow                |
| 82 | diastolic depolarization remain uncertain. Micro-dislodgement of the lead or local               |
| 83 | myocardial inflammation is estimated. At present, left ventricular hypertrophy                   |
| 84 | associated with dialysis might be associated with some mechanisms. Further, the                  |
| 85 | intensity of tined fixation of a leadless pacemaker might influence the instability of the       |
| 86 | capture threshold. However, the leadless pacemaker was implanted, satisfied with the             |
| 87 | criteria of 2-tine fixation on the pull-and-hold test. The rate-dependent change of the          |
| 88 | capture threshold was not detected five days after the implantation. To our knowledge, a         |
| 89 | case of the rate-dependent change of the capture threshold with a leadless pacemaker is          |
| 90 | very rare. There is only one case report similar to the present one <sup>3</sup> . Recapture and |
| 91 | reimplantation are commonly recommended in a case with the high capture threshold of             |
| 92 | a leadless pacemaker, but give an additional risk. The recognition of the rate-                  |
|    |                                                                                                  |

| 93  | dependency of the capture threshold during the procedure may give a chance of a            |  |
|-----|--------------------------------------------------------------------------------------------|--|
| 94  | solution by the device programming, avoiding the increase of procedural risks in           |  |
| 95  | relocation.                                                                                |  |
| 96  | References                                                                                 |  |
| 97  | 1. Kimata A, Yoshida K, Takeyasu N, Nakagami R, Osada J, Mitsuhashi T, Aonuma              |  |
| 98  | K, Nogami A. Bradycardia-dependent rise in the atrial capture threshold early after        |  |
| 99  | cardiac pacemaker implantation in patients with sick sinus syndrome. Heart Rhythm          |  |
| 100 | Case Reports 2016;2:27–31.                                                                 |  |
| 101 | 2. Katsumoto K, Niibori T, Watanabe Y. Rate-dependent threshold changes during             |  |
| 102 | atrial pacing: clinical and experimental studies. Pacing Clin Electrophysiol               |  |
| 103 | 1990;13:1009–1019.                                                                         |  |
| 104 | 3. Nusbickel AJ, Ross SJ, Miles WM, Xiang K. Rate-dependent change in capture              |  |
| 105 | threshold following implantation of a leadless pacemaker. Heart Rhythm Case                |  |
| 106 | Reports 2022;8:183–186.                                                                    |  |
| 107 |                                                                                            |  |
| 108 | Figure legends                                                                             |  |
| 109 | Figure 1. Twelve-lead electrocardiogram                                                    |  |
| 110 | Twelve-lead electrocardiogram showed an advanced atrioventricular block with 6:1 AV        |  |
| 111 | conduction (asterisk) and ventricular escape beats.                                        |  |
| 112 |                                                                                            |  |
| 113 | Figure 2. Implantation of a leadless pacemaker                                             |  |
| 114 | The Micra AVTM (Medtronic, Minneapolis, MN) was implanted in the mid-septum of the         |  |
| 115 | RV on the 3rd attempt with the 2-tine fixation (arrows) on the right anterior oblique view |  |
| 116 | of 30 degrees (A) and the left of 50 degrees.                                              |  |

117

### **Figure 3. Rate-dependent change of the capture threshold and the ECG findings**

- 119 A) The capture threshold at the implantation was 1.75V/0.24ms at a pacing rate of 60
- 120 paces/min (ppm) and 0.75V/0.24ms at 80 ppm. That after 5 days was 0.5V/0.24ms
- 121 at a pacing rate of both 50 ppm and 80 ppm.
- 122 B) Loss of capture at a pacing rate of 60 paces/min (ppm) and 1.75V/0.24ms and stable
- 123 capture at 80 ppm 0.75V/0.24ms.

# Figure 1.

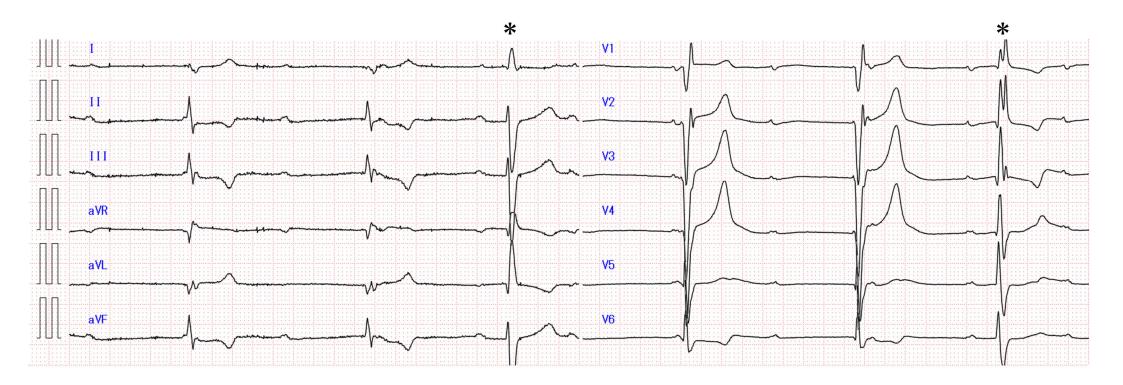
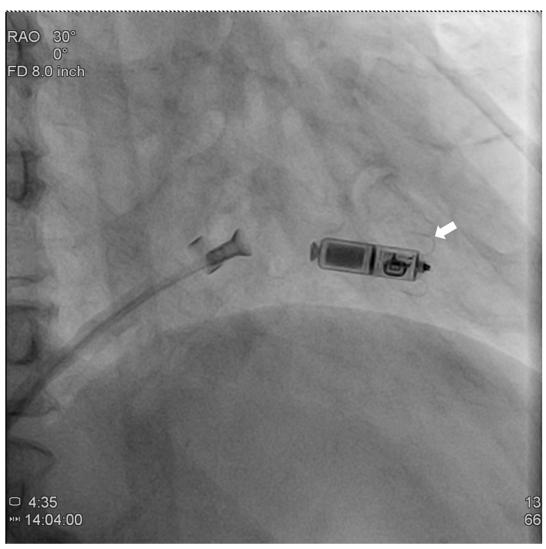
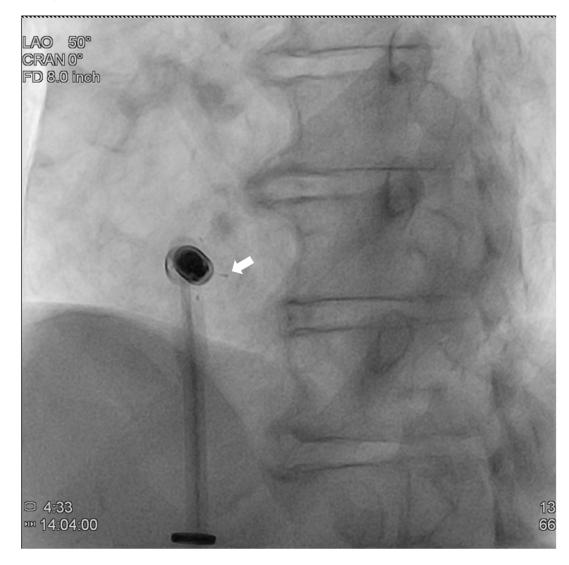





Figure 2.

A)



B)



## Figure 3A.

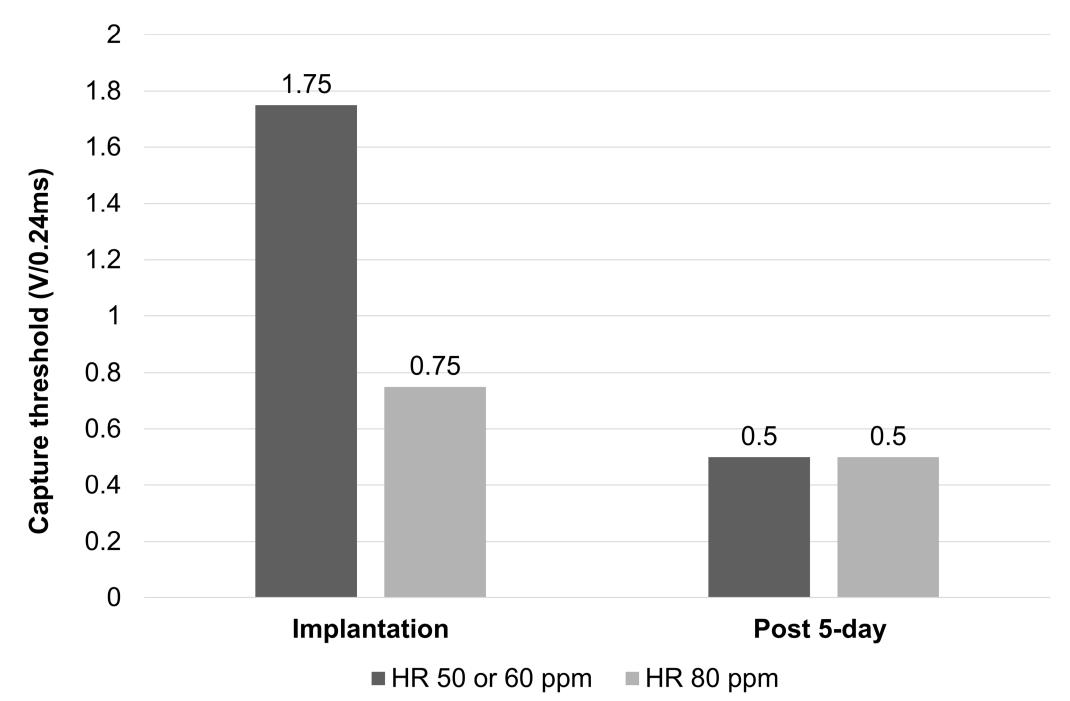



Figure 3B.

