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The influence of the counterion size is investigated in the mixed counterion systems of the salt-free
polyelectrolyte solution in a cylindrical cell model. The mixtures of two species of the counterion
having the same valence and different size are simulated systematically by means of the Monte
Carlo method in the primitive model of the rodlike polyelectrolyte solution. The results of the free
fractions and the selectivity coefficients are compared with the numerical solutions of the Poisson—
Boltzmann equation. The observed differences between both methods are explained in terms of the
ion—ion correlations and the effect of finite ion size. © 2000 American Institute of Physics.

[S0021-9606(00)50147-0]

I. INTRODUCTION

In the study of polyelectrolyte solution, the size and va-
lence of counterions are notable parameters. The thermody-
namic properties of the solution and the ion distributions are
dependent on the counterion species. The selectivity of the
counterions by the polyion, which is widely observed in the
biomolecular systems, seems to be due primarily to the dif-
ference in the ion size and valence. Then, this selectivity can
be analyzed as a consequence of the polyelectrolyte research.
In particular, the mixed counterion systems with different
size and/or valence are worth investigating quantitatively.
Their competition with the charged site of the polyion is
important to understand the characteristics of the polyion—
small ion interactions. .

The effects of the ion size and valence can be interpreted
essentially by the simple two-phase approximation to the lin-
ear polyelectrolyte solutions.' One of the practical methods
to investigate the ion distribution quantitatively is solving the
nonlinear Poisson—Boltzmann (PB) equation for the cell
model with cylindrical symmetry.”"® However, the deficien-
cies inherent in the PB approach have been recognized such
as the neglects of the ion—ion correlations and of the effect
of finite ion size.” To overcome these deficiencies, improve-
ments have been attempted on the basis of the other theoret-
ical frameworks.*® The Monte Carlo (MC) simulation is an-
other preferable way to remove the approximations in the
theories. Throughout several studies, the discrepancy be-
tween MC result and PB solution has been rer:c;gnizecl.'""3
The MC method has the advantage of the consideration of
the behavior of individual ions even in a primitive model.
Recently, the refinements in the simulations were extensively
attempted for the DNA molecular model.”* The competitive
bindings of counterions to DNA were also investigated by
the simulations.'*~"”

The aim of the present study is to examine the influences
of ion size and valence through the canonical MC simula-
tions for the mixed counterion systems of the rodlike poly-
electrolyte solution generally. The systematic comparison of
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the MC results with the PB solutions must provide a cont
bution to the fundamental knowledge of the polyion-sm
ion interaction. The results of the mixtures of two counter
species with the same valence and different size are re
sented in this manuscript. The mixed-valence systems will
reported in the following paper.

The cases of no added salt are presented here to claf
their influences on the thermodynamic properties of the
lution. In order to extract the elementary features in
mixed ion system, a polyion is assumed to be a simple
with uniformly smeared charge in the continuum dielec
model. Analytical expression of the PB solution in the s&
free case was given for the system of mixed counterions
different size, and the preferential selectivity by the poly
for the smaller counterion was presented.''” In the pre
study, numerical analysis for the differential equation is
lized to solve the PB equations. This method provides:
alternative way to evaluate the ion distributions more ¢as
and to be applicable to the mixed-valence system. ,

In the MC system corresponding to the PB system,
primitive model is adopted. The mobile counterions:
treated as finite-sized spheres with hard core potential.
radial counterion distributions are evaluated around the pt
ion in a cylindrical cell at various sets of parameters i
MC simulations with high accuracy. Some discussi
given for the dependence of the ion distribution and seled
ity on each parameter and observed differences between
MC and PB methods.

Il. METHOD
A. Solution of the Poisson—Boltzmann equation

Analytical and numerical procedures have been
sented for the solutions of the PB equation in mixed 0
terion systems in cylindrical cell model under
conditions.'®?! In this study, an accurate numerical solu
is achieved by applying the initial value problem of the®

© 2000 American Institute of Ph
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gmensional ordinary differential equation to the boundary
ue problem. The general procedure is explained below.
In an infinitely long cylindrical cell whose radius is R, an
impenetrable polymer rod whose radius is a, is assumed at
the center of the cell. The mixture of two species (A and B)
of spherical mobile counterions with different size and/or
dlence is considered in the continuum dielectric model. The
negative charge is assumed to be smeared uniformly on the
surface of the polymer cylinder. The value, b, is defined as a
mean distance of an elementary charge along the polymer
iis. The radii and positive valences of the counterion A and
B are defined as o5, op, and z,, and zg, respectively.
hen the radius of the ion A is different from that of ion B,
the zone for the equation is divided into two regions (inner
egion and outer region) for the radial distance from the cen-
ter of the cell, r, in consideration of the distance of closest
approach of each ion species. The definitions are adopted
suich that y=ey/kgT is the reduced electrostatic potential
ad lg=e’/(4me DkgT) is the Bjerrum length, where e is
the elementary protonic charge, ¢, the electrostatic potential,
kg, the Boltzmann constant, 7, the absolute temperature, &,
the permittivity of the vacuum, and D, the relative dielectric
onstant of the solvent water. In the case that the radius of
the ion A is smaller than that of ion B (0p<op), the PB
equations without added salt are expressed in the SI (Systeme
International) as

1 d ‘ d_\','

;E( ’Z) = —40007IgN av[2AC a0 eXp(—2zaY;) ]
atossr<a+tog, (1)

1 d| dy,

o =—40007IgN ay[2AC speXp(—2z4Y,)

+ :BCB() CXP( - ZByn)]

atog<r<R, (2)

where N 5y is Avogadro’s constant, and C»( and Cy are the
molar concentration of the counterion A and B at the radius
where the electrostatic potential is equal to zero, respec-
tively. The reduced electrostatic potentials in inner and outer
regions are marked by the subscript i and o, respectively.
The unit of molar concentration C is mol/dm>. The boundary
conditions are described in the polyanion solution as

(ﬂ) 2¢ (d)'o

=a+a'A' W)r_R=0, 3)

r=ato, =

yilatog)=y,(a+op),

dyl) il d.v()) (4
dr s “\dr : )
reeg (TB

r=atog

"

where §=e2/(41reonkBT)=lB/b is the charge density
parameter.”> The integrations of the ion concentration are
defined as

R =
~ 2f Croexp(—zay)rdriR*=C,, (5)

! a+¢7A
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R -
2f CBOexp(—my)rdr/Rl:CB, (6)
u+(rB

where C A and C g are the mean molar concentration of the
counterion A and B in the cell volume, respectively. If the
equivalent molar concentration of the polyion, Cp, is de-
fined as

1 1 1 3
Co= - y (7)
"7 1000N oy 7R2,  1000N 4y mR?ly
the electroneutrality condition is presented as
CP=ZA6A+2363. (8)

In the practical calculations, the following definition and
translation are utilized:>}

K2 — 80()07TIBNAVCA() ’ (9)
u=Inkr. (10)

Then, Egs. (1)-(6) are converted into the following equa-
tions:

I R RN
=——exp(2u)[zaexp(—zay;
duz 2 p A p Al
ussu<ug, (11)
d’y, 1
5 =~ 5exp(2u)[zaexp(—zay,) +2zprpa
du- 2
Xexp(—zgy,)]
ug<u<InkR, (12)
(d‘v") =2¢ (dy”) -0 (13)
dbl U=u, y u=In kR ’
dyi dyo
yi(uB)zyn(uB)v E = dii s (14)

ll=llB ll=UB

In kR .
2] Caoexp(—zay)exp(2u)dul(kR)*=C,, (15)

A

In kR
2f Cpoexp(—zgy)exp(2u)du/(kR)>=Cg, (16)
ug

where up=Ink(a+oy,), up=Ink(a+og), and rg,
= Cpy/C ap- In the case of counterions with the same radius,
the equation for the inner region is not necessary.

Until the conditions Eqs. (13)—(16) are fulfilled, Eqs.
(11) and (12) are solved iteratively varying the value of y at
r=R and C,,, Cgy with the fixation (dy,/du),-, &=0.
The integrations in Egs. (15) and (16) are evaluated by Simp-
son’s rule. The single shooting method is efficient to reduce
the number of iterations. The subroutine program on the ba-
sis of the Runge—Kutta—Verner method is applied for the
initial value problem of the differential equation.”* Error of
the electroneutrality below 10™°, whose definition is given
later in the explanation of Eq. (27), is achieved by dividing
the zone of u into 1024 or more mesh points. The correctness
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of the output is confirmed by comparison with the analytical
solutions. The programs following the procedure are appli-
cable also to the mixed-valence systems, in which the ana-
lytical solution is not known.

B. Monte Carlo simulation

In the cylindrical cell system, which is identical to that
of the PB calculation, the canonical MC simulations of the
ion distribution are performed. Starting from random distri-
bution of counterions, the MC trial of the ion movement is
carried out in the isolated cylindrical cell following the stan-
dard MC sampling algorithm.”® To assume the polyion cyl-
inder to be infinitely long, the MC cell system is constructed
from the central cell whose height is H, and two infinitely
long external cells in both axial sides. The cell height in the
simulation is determined from the polyion concentration and
the charge density parameter to avoid cell dimensions that
are too oblate.”

The interaction between the polyion and counterion are
given as — e’z In r/(2me,Db). The energy between two mo-
bile ions, labeled as i and j, is defined as the Coulombic
interaction with the hard core repulsion, as follows:

-

[ i<

Iri—rj|>0;+0;

4megD |r;—r;| (17)

uy=

where z, r, and o with subscript i or j denote the valence, the
position, and the radius of each ion, respectively. The con-
tribution of the electrostatic energy from the external cell is
also considered to eliminate the end effect of the system. The
practical calculation of the electrostatic energy is carried out
using the minimum image (MI) energy with a pair of ions in
the central cell and the self-consistent method for the exter-
nal potential. Then, the total electrostatic energy, U, is rep-
resented considering the interaction between the polyion and
mobile ions, as follows:

-

4

- =
<Pk

V=2 = Inr;+
— —_—nr;
- i 2176(]01!7 g (ij) 41TS(]D |ri_rj|Ml

+ 2 ez Ppxp(ry), (18)

where r; is the radial position of ion i, and ®py(r;) is the
external potential at position, r;, that is, the contribution of
the potential from external cells due to the radial charge dis-
tributions, which are given by averaging those in the central
cell, extending from H/2 to 0,2

A counterion can be moved to a new trial position ex-
pressed by the Cartesian coordinates within a definite step
width using uniform pseudorandom numbers. The trial is re-
jected if the collision occurs with the polymer rod or other
ions. The trial is also rejected if the ion moves away from the
cylindrical cell. If the new axial position, z, is less than zero,
it is replaced by z+ H. If z is greater than H, it is replaced by
z—H. The probability function of the acceptance is de-
scribed, as follows:

Py=min{l,exp[ — AU /kgT]}, (19)

T. Nishio and A. Mi

where AU, is the electrostatic energy change with the move:
ment. The step width of the movement trial is regulated &
give the acceptance ratio of roughly 0.5 in the early dis
carded loop for each ion species. The results are not as a
fected by the ratio within the range 0.40-0.51 whenever the
adequate numbers of trials is attempted.

The small ion distribution is evaluated by summing up
the ions in the coaxial cylindrical shell counters, whos
width is 1 A, during a sufficiently long trial loop. In the
isolated MC cell system, inhomogeneity in the ion distribu-
tion appears near the outer cell boundary in the added s
case.”® Nevertheless, this artifact is not detected in the cases
of salt-free or low salt.”’ The number of each counterion i
the whole cell volume is in the range from 20 to 200. The
iterations (4—48x 10° Monte Carlo steps per ion) are carried
out until a mean error of the concentration in the outermost
shell is below 1% in almost all cases. As the random number
generator, mainly the generalized Fibonacci method and par
tially the shift register method are applied.**~** Although the
qualitative difference depending on the number of iterations
or the random number generator is not observed, the slight
deviations (several percent) over the statistical error are de-
tected in some simulations in which the free fractions (se¢
below) are very low. Then, the results from longer iteration
using the former random number generator are adopted.

C. Representation of results and parameters

The dependences of the ion distribution on the linea
charge density, & hydrated ion radius, o, polyion rod radius
a, polyion concentration, Cp, and the fraction of ion mix
ture, w (see below), are investigated in the mixture of
monovalent—monovalent and divalent—divalent counterions
In addition, some trials of the trivalent—trivalent ion mixtue
are examined. The simulation conditions are chosen by tak
ing account of a few points such that (a) dependences on the
ion size difference are obtainable; (b) precise MC simule
tions are feasible; and (c) the conditions are in the ranyL
close to the practical experiments.

To represent the accumulation of the ions, the ratios of
the ion concentration at the outer cell boundary to the mean |
concentration are evaluated as

CCAR) . Cy(R)
fA_ E,A g fB_ EB L (M

The values are equivalent to the single ion activity coeffi-
cients in the PB system.” This value is also one of the defi-
nitions of the fraction of free counterion.”>** Consequently,
this value is tentatively termed ‘‘free fraction’’ in this mani-
script. The low value of the free fraction means that the ions
are accumulated strongly near the polyion as revealed by the
distribution profile. The selectivity coefficient of ion A
against ion B is given as follows:'"

_CxCo(R) _f»

A.B_E_B CA(R) - f_A. (ZI}N
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In the MC simulation, the concentration at the outer cell
boundary is calculated from the fitting of ion distribution in
lhe outer region near the boundary (~R/10) by a quadratic
function.

In the representation of the ion distribution, the inte-
grated fraction of the ion from inner boundary to position r,
q(r) is evaluated as

f(',+aACA(r’)r'dr'
Ja+0,Calr')r" dr'”

qa(r)= (22a)

fZ+UBCB(r’)r' dr'
ff+aBCB(r')r' dr’’

qp(r)= (22b)

The following relation is evaluated in the PB system in the
case of the same valence:

1 fa
(atog)=1————=1——. (23)
A T
In some examinations, the calculations are executed by
varying the fraction of ion composition. Thereby, the equiva-
lent fraction of ion A is represented as
24C
WA= _A_A_ . (24)
ZACA + ZBCB
Obviously, the equivalent fraction of ion B is given as Wg
=1-w,. Also, the value ¢, equivalent to the osmotic coef-
ficient, is calculated as follows:?®

_CA(R)+Cp(R) _ faCa+fsCp
Gk Co Ca+Cy

fr

= ¢A+ ¢Ba (25)

where the contribution of each ion is represented as follows:

_Ca(R) _ faCa _ Cp(R) _ faCy
"Ca+Cp CatCp ' ® CptCy Co+Cp
(26)
The temperature applied in the calculations is 25 °C, and
the Bjerrum length is taken as 7.135 A in all cases.

When the integrated fraction of the counterion charge
from inner boundary to position r, Q(r), is given as

0(r)=waqa(r)+wggp(r), 27

then the error of the electroneutrality in the PB solution is
defined as the absolute difference of the value of cell bound-
ary from unity, |1 — QPB(R)|. This quantity is utilized as one
of the indexes of accuracy of the numerical PB calculation.

In the present system of z,=zg=z, the PB Egs. (1)-(3)
signify that the PB solution gives the identical free fraction
-~ and selectivity coefficient as a function of product of coun-
terion valence z and polyion charge density parameter &,
 whenever the cell dimensions, containing ion sizes, and ion
composition are the same. Then, the comparisons of the MC
results with the PB solutions are performed at the same z&
value for different z. Furthermore, the value z>C(r) must be
identical in the case of different z when other parameters are
the same in the PB system.

ba
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FIG. 1. Dependence of the free fractions f, , f (lower data, left axis) and
of the selectivity coefficient K , 5 (upper data, right axis) on the product of
counterion valence z and polyion charge density parameter & in the mixture
of two counterion species with different size (0,=3.0 A, o5=5.0 A) and
same valence (zy=zp=z) at same number of two species of ion (w,
=0.5). The MC results for z=1 (circles), 2 (squares), and 3 (diamonds) are
presented together with the PB solution (lines) in the case of a=5.0 A and
R=172.0 A. Lower open symbols, f ; closed symbols, f : and upper open
symbols, K g. Dashed line represents K, g= 1.

lll. RESULTS
A. Dependence on charge density parameter

First, the dependences on the charge density of the poly-
ion are presented for the mixtures of two counterion species
with the same valence z and with different size (op<o0p).
As described above, if the dimensions of the cell and ions,
and the ion composition are the same, the PB results are
identical with the product of z? and the ion distribution C(r)
as a function of z£. In short, the values f,, f5., and Kapin
the same cell are common functions of z£ on the framework
of the PB equation. On the other hand, the differences with
the valence z are expected due to the ion—ion correlation and
the ion size effect in the MC simulations.

In Fig. 1 the MC results for z=1,2, and 3 are presented
together with the PB solution in the case of a=5.0 A, R
=172.0 A, oA=3.0 A, and o=5.0 A at wa=0.5, corre-
sponding to Cp=2.5041X10"% mol equivalent/dm® at ¢
=1. As shown in Eq. (7), Cp is proportional to &,

When z§ is less than unity, the selectivity coefficient due
to the difference of the ion radius is not remarkable for any z.
With high value z& exceeding unity, the free fractions of
both ions are separated, and the selectivity apparently rises.

The deviations between the MC result and the PB calcu-
lation become significant in still higher z¢& range. The free
fractions of the higher valence counterion apparently de-
crease downward in comparison with the PB solutions. How-
ever, the selectivity coefficient is not so sensitive as the free
fractions. In the range z£<2, the selectivity coefficients from
the MC simulations are indistinguishable within the statisti-
cal error. At z{=2, the order of selectivity is the same as
order of valence. The monovalent ion distribution is very
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FIG. 2. Comparison of the ion distributions 22C(r) (a) (log—log plot) and (b) of the integrated fractions g(r) of both counterions at z&é=2 in Fig. 1. The MC
results for z=1 (£=2, circles), 2 (¢=1, squares), and 3 (§=2/3, diamonds) are presented together with the PB solutions (lines). Open symbols, ion A
(gA=3.0 A); closed symbols, ion B (og=5.0 A). Other parameters are the same as in Fig. 1.

close to the PB solutions (see Fig. 2). The selectivity in the
trivalent ions is also slightly larger than the divalent ions
even in still higher z§& range.

In the mixed monovalent counterion systems, extraordi-
nary behavior appears in high z£(=3) range. The free frac-
tion of the large ion fj is higher than the PB solution, and
the free fraction of the small ion f, goes downward. In the
range z£=5, higher selectivities are observed even in com-
parison with the case of the trivalent ions. This anomaly in
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a ]
1 3
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001 | =
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0.0002 L1 L
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FIG. 3. Comparison of the ion distributions, (a) 22C(r) and (b) of the integrated fractions, ¢(r) of both counterions at z£=5 in Fig. 1. The MC resulls“
=1 (£=5), 2 (£=2.5), and 3 (£=5/3) are presented together with the PB solutions. Other parameters and details are the same as in Fig. 1 and 2. 0
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the monovalent ions is obviously due to very high accumu-
lation of the ions with finite ion size near the polymer rod
surface.

The corresponding forms of the ion distribution 22C(r)
and the integrated fractions of each ion at z§=2 and 5 in
Fig. 1 are shown in Figs. 2 and 3, respectively. The accumu-
lation of the multivalent counterions in the vicinity of the
polyion is higher in the MC results than the PB solution
considering the Coulombic interaction only. This deviation

q(r

1 1 1 ool
0

10 50 100
r[A]
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of the MC from the PB result is significant at the high charge
density. This seems to be an appearance of the ion—ion cor-
relations between individual ions ignored in the PB system.

In the MC result for the monovalent ions in Fig. 3(a)
shoulders of the distribution are apparent for both ions. A
part of small ion A is strongly accumulated within the first
“layer”” close to the polyion rod, and the remaining ions are
pushed away by the repulsion of the core potential. Then, the
imegularity of the ion distribution appears. In particular, the
large ions B are repelled far from the polyion, and show a
shoulder of the ion distributions in the second layer (at r
~a+20,+ 0p). As a result, high free fraction of ion B and
low free fraction of ion A are observed. The feature for
monovalent counterion completely disappeared at z£é=2 in
the same cell dimensions as shown in Fig. 2. The PB equa-
tion seems to be a good approximation for the monovalent
counterions under these conditions.

B. Dependence on counterion size and polymer
radius ;

In the PB system, the free fractions and the selectivity
coefficient are determined by the ratios of (a+opg) to (a
+0,) and to R at given z§& and w, . As described below, the
dependence of the selectivity coefficient on R is not so re-
markable. The selectivity depends mainly on the ratio (a
tog)/(a+0,) in the PB system unless R is small. How-
ever, even if the ratio is fixed, various combinations are pos-
sible for the mobile ion size and the polyion radius in the
MC system. When many bulky ions are contained, the ap-
pearance of the ion size effect becomes significant. The se-
lectivity is expanded in the MC simulations, if the difference
in the radii of counterion species is large.

When the radius of ion A o, is fixed at 3.0 A, the
dependence of each free fraction f,, fg and the selectivity
coefficient K5 g on the radius of ion B oy are shown for
monovalent and divalent ion mixtures at zé=5 and wy
=(.5 in Fig. 4. The other parameters of the polyion and cell
are the same in Fig. 1. The high selectivity for the small ion
is represented when the difference of the ion radius is large.
At lower z¢, the dependence of the selectivity coefficient on
the radius of ion is weaker.

In the mixture of divalent counterions, the free fraction
from the MC simulation is always smaller than that of the PB
solution. This means that the MC result of the concentration
near the polyion is larger than the PB result. The MC result
for the larger ion is closer to that of PB result than that for
the smaller one. The dependence of the selectivity coefficient
on the ion size by the MC simulation is greater than that of
the PB solution.

When the ion B is bulky in high z¢£ range, an extraordi-
nary ion size effect appears in the case of the monovalent
counterions. For large op, the considerably large deviations
of the selectivity coefficient between the MC and the PB
methods are observed as shown in Fig. 4. At og=6 A, an
extensive shoulder appears in the distribution of ion B of the
MC result. If the radii of both ions are small (<3 A), the
extraordinary effect of ion size vanishes. Similar tendencies
of the ion binding selectivity were observed and analyzed in
- the simulation for the monovalent cation competition to

Rodlike polyelectrolyte solution 10789
IIIIIIIIIIIIllIllTlIllllIllllIIl’ :10
3 'K
L | ,>>§
T « I — i
1E 05
\0.3:
<t— :
0.1 9 1
= ° b
C ] fB a )
0.02—lllllllllllllllllIllllllllllllllll
0 1 2 3 4 5 6 7
oy [A]

FIG. 4. Dependence of the free fractions f,, fg and of the selectivity
coefficient K g on the radius of ion B oy in the mixture of two counterion
species with fixed radius of ion A o,=3 A ata=5 A, z6=5, R=172.0 A,
and w,=0.5. The MC results for z=1 (circles) and 2 (squares) are pre-
sented together with the PB solutions (lines). Other details are the same as in
Fig. 1.

DNA.**% At lower z§, the free fractions of the MC results
are very close the PB solutions, and the dependence on the
ion radius is smaller than that for divalent ions (data not
shown).

The dependence on the polyion radius a is shown at z¢
=4 in Fig. 5, when the counterion radii are fixed. With de-
crease of the rod radius, the free fraction of small ion A

Illl|lll'lIIIITIIIIII|IIIIIIII1'6
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FIG. 5. Dependence of the free fractions f,. fg and of the selectivity
coefficient K , g on the radius of the polyion rod a in the case of the fixed ion
radii o,=3 A and 0g=5 A at z£=4, R=172.0 A and w,=0.5 (a). (b)
expanded plot for fy. Other details are the same as in Fig. 1.
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FIG. 6. Dependence of the free fractions f,, fg and of the selectivity
coefficient K, g on the fraction of ion mixture w, in the case of the fixed
radii a=5 A, 0,=3 A, and 0g=5 A at z£=4 and R=172.0 A. Other
details are the same as in Fig. 1.

decreases considerably. The free fraction of large ion B is
not affected so. Then, the selectivity coefficient increases
with thinning the rod in all cases. Notably, the free fraction
of large ion B has a minimum around a~4.6 A by the PB
calculation. The minimum point must exist in the MC simu-
lations, and its position seems to be greater than that of the
PB result [Fig. 5(b)]. However, it is difficult to determine the
point accurately from the MC results due to the statistical
error. This indicates that the accumulated small ions around
a very thin rod push out the large ions.

The discrepancy of the selectivity coefficient between
the PB and MC results increases with decrease in the rod
radius. The free fractions from the MC simulation are always
smaller than that of the PB solution in the divalent ions.
Furthermore, the deviations of the free fraction of the smaller
ion A between both results are larger in the divalent ions
than in the monovalent ions. However, the deviations of the
selectivity coefficient are larger in the monovalent ions, in
particular, for the thin rod. This fact also is interpreted by the
strong electric force and the small volume for the accumu-
lated monovalent ions close to the polyion as presented in
the distribution profile.

C. Dependence on fraction of ion mixture

The dependence on the fraction of ion mixture w is ex-
amined at z€=4. As shown in Fig. 6, the free fraction of the
small ion A decreases with the decrease of the fraction of ion
A, w, . The dependence of the fg value is more gradual. As
a result, the selectivity coefficient increases with the decrease
of wy. The PB curves are smooth even at a point w,=1
—1/z£6=0.75. The dependences on w, are certainly stronger
than those of the simple competitive binding model.

In the MC results, small ions A are accumulated strongly
around the polyion with lowering w . This tendency is em-
phasized in the case of monovalent ions due to the size ef-
fect. The influence is exhibited as a higher selectivity coef-
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FIG. 7. Osmotic coefficient ¢ and its fraction of each ion ¢, , ¢y depes
ing on the fraction of ion mixture w, under the same conditions in Fig.
The MC results for z=1 (¢,, open circles; ¢y, closed circles; and ¢
triangles) and 2 (¢, , open squares; ¢y, closed squares; and ¢, invere
triangles) are presented together with the PB solutions (lines).

ficient in the low w, range. For the divalent ion mixture, ff
dependences on w, of the MC results are almost parallel &
the PB calculations in the log plot.

In Fig. 7, the osmotic coefficient, ¢, and the contributio
of each ion are shown from the calculations in Fig. 6. Inth
figure of the linear plot, the deviations between the MC an
PB results look very large in the divalent ions. This deviati
in the multivalent ions decreases with decrease of the po
ion charge density. The MC results for monovalent ions ar
close to the PB results in spite of the size effect. The devia
tions of contributions from both ions cancel each other inff
total value ¢. Then, this value is not so sensitive to
fraction of mixture. :

D. Dependence on polymer concentration

When other parameters are the same, the dependence ¢
cell radius R is investigated to check the polymer concent
tion dependence. From Eq. (7), the radius R dependence c
be represented as a dependence on the value Cp/é. Th
dependence is shown at 0,=3.0 A, 0g=5.0 A, and z¢=4i
Fig. 8. The free fractions of both ions decrease with
dilution of the solution. The selectivity coefficient decrea
gradually with the dilution as a result.

The MC results in the monovalent ions are almost pa
allel to the PB ones. On the other hand, the deviation of
MC from the PB result in the divalent ions increases Wi
increase in the polymer concentration. This suggests (i
stronger effect of the ion—ion correlation between the diy
lent ions. However, the selectivity coefficient is insensiti
to the difference.

By the extrapolation of Cp/&—0 (R— ), the val
the PB method tends to K, 3= 1.64 in the limit of infin
dilution. The limits of the MC results seem to be sligh
larger than this value. Nevertheless, an apparent differe
cannot be determined by taking account of the stati
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. 8. Dependence of the free fractions f,, fy and of the selectivity
ficient K, 5 on the value Cp/& [mol equivalent/dm®] in the case of the

ndii a=5 A, 0,=3 A, and o0y3=5 A at zé=4 and w,=0.5. The
dotted lines denote the least-square fittings of the MC data of the
etivity coefficient by a function KA.B=K',}\IB+ a(Cpl€)P, where K‘A‘H is
niting value of K ,  in the infinite dilution; a and S, fitting parameters.
er details are the same as in Fig. 1.

. These indicate that the finite fraction of ion A
ins in the inner region (a+ op,<r<a+ og) even in the
nite dilution [see Eq. (23)]. In the range of z£<1, the
g value seems to tend to unity in both of the PB and MC
alis. These facts are consistent with the explanation of the
ion condensation hypothesis.

DISCUSSION AND CONCLUSION

In the mixture of the counterions with same valence, the
4 dependences of the free fraction and the selectivity co-
tient on the various parameters are represented in detail.
MC simulations, the degree of counterion accumula-
is greater than that of the PB solutions in most cases.
means that the repulsive interactions between counteri-
near polyion are weak in the MC system in comparison
the mean-field approximation. The influence of the ion—
elation tends to accumulate the counterions near the
yion. The tendency of the counterion accumulation in-
es with increasing the valence of the counterion and the
ge density of the polyion. The finite size of the ion partly
els this influence. The weak repulsive interactions be-
counterions are strengthened by the core potential of
inite sized ions. Then, the MC and PB results in the
alent ions are quite similar when the ion radii are in
nge of 2-4 A and the charge density is not so high. In
the selectivity of small ion against large ion is em-
for the multivalent ions in the MC simulations.
Inthe MC system for the monovalent counterion at high
fion charge density, the effect of core potential emerges
icantly as a shoulder in the ion distribution, since very
ion density is induced by the electrostatic attraction to
lyion. Roughly estimating, when the ion concentration
5 10% of the close-packed concentration around the
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polyion rod, the extraordinary size effect appears due to the
frequent collisions. Under this condition, there are some
cases where the second peak in the distribution is observed
as a result of the growth in the irregularity. This extraordi-
nary effect of the ion size can also be represented in the
system containing single counterion species. It is clearly ex-
hibited in the ion selectivity depending on the difference of
ion radius.

If the polyion charge density is the same, the depen-
dences on the parameters are larger in the divalent ions than
that in the monovalent ions, because the value z¢ differs
twofold. Furthermore, the deviations of the MC results from
the PB solutions in the multivalent ions are greater than
those in the monovalent ions for the parameters. This ten-
dency is observed more clearly at higher charge density.

The present MC results indicate that the ion—ion corre-
lations and the effect of the ion radius make the ion selectiv-
ity larger than that predicted by the PB calculations in high
z£ range, in particular, for the multivalent counterion mix-
ture. Furthermore, the pronounced size effect must appear on
the condition that the concentration of the counterion is par-
ticularly high in the vicinity of the polyion. Reconsiderations
on the interpretations of the experiments are required by tak-
ing these points into account. For example, it is expected that
the effects found in the present MC simulations can clarify
some differences between the experiment and the PB solu-
tion in the osmotic coefficient of the salt-free polyelectrolyte
solution. ¢

Various effects are recognized as factors which modify
the ion distribution, such as dielectric discontinuity, dielec-
tric saturation, polymer configuration and conformation, spe-
cific site binding of the ions, and so on.*®*' The primitive
model must not be enough for the reproduction of the experi-
mental results without reservation due to its simplicity. It is
believed, however, that the present approach is still valuable
for the elucidation of the ion selectivity and other properties.
A study on the mixed-valence systems is now in progress.
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