Clinical significance of serum S100 calcium binding protein A4 in idiopathic pulmonary fibrosis

メタデータ	言語: eng
	出版者:
	公開日: 2021-07-01
	キーワード (Ja):
	キーワード (En):
	作成者: Akiyama, Norimichi, Hozumi, Hironao, Isayama,
	Takuya, Okada, Jun, Sugiura, Katsunori, Yasui, Hideki,
	Suzuki, Yuzo, Kono, Masato, Karayama, Masato,
	Furuhashi, Kazuki, Enomoto, Noriyuki, Fujisawa,
	Tomoyuki, Inui, Naoki, Nakamura, Yutaro, Suda,
	Takafumi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/00003859

1	ORIGINAL ARTICLE:
2	TITLE: Clinical significance of serum S100 calcium binding protein A4 in idiopathic
3	pulmonary fibrosis
4	
5	Authors' full names:
6	Norimichi Akiyama, M.D. ¹
7	Hironao Hozumi, M.D., Ph.D. ¹ *
8	Takuya Isayama ²
9	Jun Okada ²
10	Katsunori Sugiura ²
11	Hideki Yasui, M.D., Ph.D. ¹
12	Yuzo Suzuki, M.D., Ph.D. ¹
13	Masato Kono, M.D., Ph.D. ³
14	Masato Karayama, M.D., Ph.D. ¹
15	Kazuki Furuhashi, M.D., Ph.D. ¹
16	Noriyuki Enomoto, M.D., Ph.D. ¹
17	Tomoyuki Fujisawa, M.D., Ph.D. ¹
18	Naoki Inui, M.D., Ph.D. ^{1, 4}
19	Yutaro Nakamura, M.D., Ph.D. ¹

20	Takafumi	Suda,	M.D.,	Ph.D. ¹	
----	----------	-------	-------	--------------------	--

22	Authors'	affiliation(s):
----	----------	-----------------

- ²³ ¹ Second Division, Department of Internal Medicine, Hamamatsu University School of
- 24 Medicine, 1-20-1 Handayama Higashiku, Hamamatsu 431-3192, Japan
- 25 ² Medical & Biological Laboratories Co., Ltd., Nagoya, Japan
- ³ Department of Respiratory Medicine, Seirei Hamamatsu General Hospital, 2-12-12
- 27 Sumiyoshi, Naka Ward, Hamamatsu, 430-8558, Japan
- ⁴ Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School

of Medicine, 1-20-1 Handayama Higashiku, Hamamatsu 431-3192, Japan

30

31 * Corresponding author:

- 32 Hironao Hozumi
- 33 Second Division, Department of Internal Medicine, Hamamatsu University School of
- 34 Medicine, 1-20-1 Handayama Higashiku, Hamamatsu 431-3192, Japan
- 35 E-mail address: <u>hozumi@hama-med.ac.jp</u>
- 36 Fax: 81(53)435-2449
- 37 ORCID ID: 0000-0001-5439-1543
- 38

- 39 Word count:
- 40 Abstract 243
- 41 Text 2494

43 SUMMARY AT A GLANCE:

- 44 S100 calcium binding protein A4 is a promising serum biomarker that may predict disease
- 45 progression and mortality in idiopathic pulmonary fibrosis patients. Insights from this
- 46 study may facilitate establishment of treatment strategies for idiopathic pulmonary fibrosis.

47 ABSTRACT

48	Background and objective: Idiopathic pulmonary fibrosis (IPF) is a progressive
49	interstitial lung disease with a poor prognosis. There are no established serum biomarkers
50	for predicting the outcomes of IPF. S100 calcium binding protein A4 (S100A4) is
51	considered a marker of fibroblasts; however, its clinical application remains to be
52	investigated. We evaluated the clinical relevance of S100A4 in IPF patients.
53	Methods: Serum S100A4 levels in 95 consecutive IPF patients and 50 healthy controls
54	(HCs) were measured using enzyme-linked immunosorbent assay. S100A4 expression in
55	lung tissues was determined using immunohistochemistry/immunofluorescence and its
56	association with disease progression (defined as deterioration in lung function or death)
57	and mortality was assessed using Kaplan–Meier method and Cox hazards analysis.
58	Results: Serum S100A4 levels were undetectable in all HCs but were detectable in 26
59	(27.3%) of the 95 IPF patients ($P < 0.01$). Immunostaining of lung tissues from IPF
60	patients showed aggregation of numerous S100A4-expressing cells around the fibroblastic
61	foci and mature fibrotic regions. IPF patients with higher serum S100A4 levels had a
62	significantly worse prognosis than those with low serum levels (2-year cumulative survival
63	rate, 41.7% vs. 77.0%, respectively, $P < 0.01$). On multivariate analyses, baseline serum
64	S100A4 levels (per 10 ng/mL increase) were independently associated with higher disease
65	progression rate (odds ratio 1.06, $P = 0.01$) and higher mortality (hazard ratio 1.18, $P =$

4

66 0.03).

67	Conclusions: S100A4 is a promising serum biomarker that may help predict disease
68	progression/mortality. Our findings may help establish treatment strategies for IPF.
69	
70	Key words:
71	Biomarker; fibroblast; idiopathic pulmonary fibrosis; S100A4
72	
73	Short title:
74	S100A4 in IPF
75	
76	Abbreviations:
77	AE, acute exacerbation; CI, Confidence Interval; DLCO, diffusing capacity of lung for
78	carbon monoxide; FEV _{1.0} , forced expiratory volume 1.0 (sec); FVC, forced vital capacity;
79	GAP, Gender-Age-Physiology; HC, healthy control; HRCT, high-resolution computed
80	tomography; IPF, idiopathic pulmonary fibrosis; IQR, interquartile range; KL-6, Krebs von
81	den Lungen-6; OR, odds ratio; SD, standard deviation; SP-D, surfactant protein D;
82	S100A4, S100 calcium binding protein A4; UIP, usual interstitial pneumonia.

83 INTRODUCTION

84	Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized
85	by abnormal proliferation of epithelial/mesenchymal cells, disorganized deposition of
86	extracellular matrix, and fibroblastic foci. ¹⁻⁵ IPF is associated with high mortality (average
87	survival: 3–5 years); however, its clinical course is highly variable. ⁶ Current treatment
88	options for IPF include anti-fibrotic agents and lung transplantation. ⁴ Early intervention
89	may help improve clinical outcomes. ⁷ Therefore, identification of non-invasive biomarkers
90	that can predict disease progression is a key imperative.
91	S100 calcium binding protein A4 (S100A4, also termed fibroblast-specific protein-1)
92	belongs to the S100 family of proteins containing calcium-binding motifs. S100A4 is a
93	marker of fibroblasts used to study the mechanism of tissue fibrosis. ⁸⁻¹⁴ Reportedly,
94	S100A4 promotes lung fibrosis via proliferation and activation of fibroblasts. ¹⁵⁻¹⁷
95	Therefore, we hypothesized that serum S100A4 levels in IPF patients may reflect
96	pulmonary fibroblastic activity and may serve as a useful prognostic biomarker. The
97	clinical relevance of serum S100A4 in IPF patients remains to be investigated. Therefore,
98	this study examined the S100A4 expression in lung specimens and evaluated the
99	association of serum S100A4 level with clinical parameters and mortality in IPF patients.
100	

101 **METHODS**

6

102 Patients and diagnostic criteria

103	We retrospectively screened consecutive IPF patients diagnosed between 2002 and 2016 at
104	the Hamamatsu University Hospital (Hamamatsu, Japan) and for whom serum samples
105	collected at the time of diagnosis were available. No patient had received anti-fibrotic or
106	anti-inflammatory therapy before the diagnosis of IPF. The diagnosis of IPF was based on
107	multidisciplinary discussion, according to the international consensus criteria. ^{1-3, 5} All
108	patients were followed up for >1 year or until death. Acute exacerbation (AE) of IPF was
109	diagnosed on the basis of 2016 International Working Group report. ¹⁸ The exclusion
110	criteria were: acute exacerbation of IPF (AE-IPF) or presence of severe comorbidity at the
111	time of diagnosis (advanced malignancy, liver cirrhosis or renal failure requiring
112	haemodialysis). Consequently, 95 IPF patients were enrolled in this study. Serum samples
113	were also collected from 50 age- and sex-matched healthy controls (HCs). This
114	retrospective study was conducted according to the Declaration of Helsinki. Signed
115	consent forms were obtained from all subjects with the exception of those who died before
116	2016. The institutional review board of the Hamamatsu University School of Medicine
117	waived the informed consent requirement for deceased patients and approved this study
118	(approval number 17-164).

119

120 Data collection

122	smoking history; laboratory data; results of pulmonary function tests, Gender-Age-
123	Physiology (GAP) stage, ¹⁹ high-resolution computed tomography (HRCT) and
124	histopathological examination of lung biopsy; treatment details; survival outcomes.
125	
126	Measurement of serum S100A4 levels
127	Baseline serum samples were collected at the time of diagnosis and stored at -80°C until
128	further analysis. Serum S100A4 levels were retrospectively measured using commercially
129	available enzyme-linked immunosorbent assay (CircuLex S100A4 ELISA Kit Ver.2; MBL
130	CO, LTD., Nagoya, Japan) according to the manufacturer's instructions.
131	
132	S100A4 immunohistochemistry and immunofluorescence
133	Formalin-fixed, paraffin-embedded sections (5 μ m thick) of surgically-resected lung
134	biopsy specimens from IPF patients were analysed. Peritumoural normal lung tissues from
135	lung cancer patients without IPF were used as control. Detailed methods are presented in
136	Supplementary Method S1.
137	
138	Statistical methods

Data pertaining to the following variables were collected from medical records: sex; age;

121

139 Statistical analyses were performed using EZR (Jichi Medical University, Saitama, Japan),

140	which is a graphical user interface for R (The R Foundation for Statistical Computing,
141	Vienna, Austria). Data are expressed as median [interquartile range (IQR) or range] or as
142	frequency (%). Fisher's exact test was used for comparing proportions among groups.
143	Between-group differences were assessed using the Wilcoxon/Kruskal–Wallis test.
144	Correlation between different parameters was evaluated using the Spearman's correlation
145	test. Disease progression was defined as deterioration in lung function [≥10% relative
146	decline in %predicted forced vital capacity (%FVC)] or death. Progression-free survival
147	(PFS) was defined as the time from the date of diagnosis until the date of first 'disease
148	progression', death or the most recent follow-up. The observation period lasted from the
149	date of diagnosis until the most recent follow-up or the date of death. Patients were
150	censored if they remained alive until 31 August 2018. Receiver-operating characteristic
151	(ROC) curve analysis was performed to identify an optimal cut-off value, which was
152	decided as the point with the highest value of sensitivity $+$ specificity -1 (Youden's index).
153	Survival rates and between-group differences were calculated using the Kaplan-Meier
154	analysis and log-rank test, respectively. Cox proportional hazards regression analyses with
155	time-dependent covariates were performed to identify factors associated with disease
156	progression and mortality in IPF patients; age, sex, anti-fibrotic treatment, and all variables
157	that showed a significant association in univariate analysis were included in the
158	multivariate analysis. $P < 0.05$ was considered statistically significant.

161 **Baseline characteristics**

- 162 Baseline characteristics are summarized in Table 1. No significant differences were
- 163 observed between IPF patients and HCs with respect to age or sex. Among the 95 IPF
- 164 patients, 71 (74.7%) experienced disease progression, 26 (27.4%) developed AE, and 51
- 165 (53.7%) died during the observation period. Forty-six deaths were due to respiratory
- 166 failure, 3 were attributed to lung cancer that developed after IPF diagnosis, and 2 were
- 167 attributed to a coronary event.
- 168 Treatment details pertaining to the observation period are presented in Supplementary
- 169 Table S1. Among the 95 patients, 65 (68.4%) received specific treatment for IPF. Fifty
- 170 (52.6%) patients were treated with ant-fibrotic agents (pirfenidone and nintedanib).
- 171 Thirty-two (33.7%) patients were treated with corticosteroids with/without
- 172 immunosuppressants during the observation period due to AE-IPF that developed after IPF
- 173 diagnosis in most cases.

174

175 Serum S100A4 levels

- 176 Baseline serum S100A4 levels are presented in Figure 1. Serum S100A4 were
- undetectable in all the HCs (nearly 0 ng/mL), but were detectable in 26 of the 95 (27.3%)

178 IPF patients (*P* < 0.01).

S100A4 expression in lung tissues

181	Representative results of immunostaining are presented in Figure 2 and Supplementary
182	Figure S1-S2. Immunohistochemistry of control lungs ($n = 4$) demonstrated expression of
183	S100A4 in intra-alveolar macrophages; however, S100A4 was sparsely expressed in
184	normal alveolar tissue (Figure 2A). Conversely, lung tissues of IPF patients exhibited
185	diffuse and partially strong expression of S100A4 ($n = 8$; Figure 2B). In particular,
186	abundant S100A4-expressing cells were observed in the areas between the periphery of
187	fibroblastic foci and adjacent, nearly intact alveolar structures as well as adjacent to areas
188	of mature fibrosis (Figures 2B and 2C). Immunofluorescence also showed abundant
189	S100A4-expressing cells around the periphery of fibroblastic foci that were constituted by
190	αSMA-positive but S100A4-negative myofibroblasts (Supplementary Figure S1A–D).
191	Although there were a small number of S100A4-expressing cells among the fibrotic foci,
192	co-expression of S100A4 and α SMA was not observed in these cells (Supplementary
193	Figure S1D).

S100A4 levels and clinical parameters

196 Serum S100A4 levels in IPF patients showed neither a significant correlation with any

197 clinical parameter (age, laboratory data or results of pulmonary function tests;

198 Supplementary Table S2) nor an association with smoking habit (Supplementary Figure

199 S3).

200

- 201 Subgroup analysis based on S100A4 levels
- 202 ROC curve analysis was performed to identify the optimal cut-off values of serum S100A4
- 203 for predicting disease progression (Supplementary Figure S4). Using 22.3 ng/mL as the
- cut-off value of serum S100A4, the sensitivity and specificity were 42.9% and 83.3%,
- 205 respectively. Considering this result, patients with serum S100A4 level < 22.3 ng/mL and
- those with serum S100A4 level \geq 22.3 ng/mL were categorized as serum S100A4^{low} and
- 207 serum S100A4^{high} subgroups, respectively.

208 The baseline characteristics of IPF patients disaggregated into S100A4^{high} and

209 S100A4^{low} subgroups and are presented in Supplementary Table S3. The median PaO₂

210 level in the S100A4^{high} subgroup was significantly higher than that in the S100A4^{low}

subgroup (80 Torr vs. 75 Torr, respectively; P = 0.04). A significant between-group

difference was observed in baseline GAP stage (P < 0.01). However, no significant

- 213 between-group differences were observed with respect to other baseline characteristics.
- 214 Kaplan–Meier survival curves of the S100A4^{high} and S100A4^{low} subgroups are shown
- in Figure 3. PFS rate in the S100A4^{high} subgroup was significantly lower than that in the

216	S100A4 ^{low} subgroup (1-year cumulative PFS rate, 58.4% vs. 77.8%, respectively; $P =$
217	0.01; Figure 3A). Survival rate in the S100A4 ^{high} subgroup was significantly lower than
218	that in the S100A4 ^{low} subgroup (2-year cumulative survival rate, 41.7% vs. 77.0%,
219	respectively; $P < 0.01$; Figure 3B).
220	Analyses regarding the combination of serum S100A4 and GAP staging system are
221	presented in Supplementary Figure S5. GAP system solely showed a good prognostic
222	separation (Figure S5A). Regarding cumulative survival rates in the GAP stage III group,
223	the S100A4 ^{high} and S100A4 ^{low} subgroups showed no between-group differences (log-rank,
224	P = 0.93; Figure S5B). In the GAP stage I group, the S100A4 ^{high} subgroup tended to have a
225	lower cumulative survival rate compared with that in the S100A4 ^{low} subgroup (log-rank, P
226	= 0.09; Figure S5C).
227	

228 Prognostic significance of serum S100A4

229 The results of Cox proportional hazards regression analysis showing correlates of

230 disease progression are presented in Table 2. On univariate analysis, higher PaO₂ levels,

higher %DLCO, and higher %FVC were associated with a lower disease progression rate.

232 Conversely, serum S100A4^{high} (vs. S100A4^{low}) and higher serum S100A4 levels (per 10

233 ng/mL increase) were associated with a higher disease progression rate. We adjusted for

each of 'serum S100A4^{high}' and 'serum S100A4 level' in separate multivariate models. In

235	both models, higher %FVC was independently associated with a lower disease progression
236	rate, whereas higher serum S100A4 levels [hazard ratio (HR) 1.06 per 10 ng/mL increase,
237	P = 0.01], but not serum S100A4 ^{high} (vs. serum S100A4 ^{low} ; HR 1.65, $P = 0.07$), was an
238	independent predictor of a higher disease progression rate.
239	Results of the Cox proportional hazards regression analysis of mortality are presented
240	in Table 3. On univariate analysis, higher PaO ₂ levels, higher %DLCO, and higher %FVC
241	were associated with significantly lower mortality rate. Conversely, higher age, serum
242	S100A4 ^{high} (vs. S100A4 ^{low}), and higher serum S100A4 levels were associated with a
243	higher mortality rate. We also adjusted for both 'serum S100A4 ^{high} ' and 'serum S100A4
244	level' in separate multivariate models. In both models, higher PaO ₂ levels and
245	higher %FVC showed an independent association with a lower mortality rate, whereas
246	higher serum S100A4 levels (HR 1.18 per 10 ng/mL increase, $P = 0.03$), but not serum
247	S100A4 ^{high} (vs. serum S100A4 ^{low} ; HR 1.69, $P = 0.10$), was an independent predictor of a
248	higher mortality rate.

250 **DISCUSSION**

In this study, serum S100A4 levels were undetectable in all HCs but were detectable in
approximately 27% of IPF patients. Immunostaining demonstrated infiltration of abundant
S100A4-expressing cells in lung tissues of IPF patients. Multivariate analyses revealed an

254	independent association of higher serum S100A4 levels with both a higher disease
255	progression rate and a higher mortality rate. To our knowledge, this is the first study that
256	identified the clinical significance of serum S100A4 in IPF patients.
257	Activated fibroblasts and myofibroblasts play a key role in fibrogenesis in IPF. ²⁰⁻²³
258	S100A4 reportedly promotes the transition of fibroblasts to myofibroblasts, inducing
259	α SMA and collagen 1 expression. ⁸ In this context, the role of S100A4 in lung fibrosis has
260	been investigated in a mouse model of bleomycin-induced lung fibrosis. ^{9, 11, 15-17} Tanjore et
261	al. found that S100A4-positive lung fibroblasts were derived from both lung epithelial
262	cells undergoing epithelial-mesenchymal transition and bone marrow progenitor cells.9
263	Xia et al. reported that administration of mesenchymal progenitor cells derived from IPF
264	patients converts the model of self-limited lung fibrosis to model of persistent fibrosis in
265	an S100A4-dependent manner. ¹⁵ Li et al. reported that while the deficiency of S100A4
266	attenuated pulmonary fibrosis, adoptive transfer of S100A4 ⁺ macrophages induced lung
267	injury/fibrosis in S100A4 ^{-/-} mice. ¹⁶ Collectively, these studies indicated a
268	pro-fibrotic/pathogenic role of tissue S100A4 in pulmonary fibrosis.
269	Two studies have documented increased expression of S100A4 in lung tissues of IPF
270	patients by immunohistochemistry. ^{11, 15} Consistently, we also found prominent expression
271	of S100A4-positive cells in IPF lungs. Considering that S100A4 is a protein that can be
272	secreted into extracellular space, ⁸ fibrotic lung tissue is a potential source of serum

273	S100A4 in IPF	patients. I	Interestingly, a	previous s	study found	1 numerous

274	S100A4-expressing cells primarily in the interface between relatively unaffected alveolar
275	structures and the periphery of fibroblastic foci that were constituted by α SMA-positive
276	but S100A4-negative myofibroblasts; these findings suggested that these regions are an
277	active fibrotic front-line and that S100A4-expresing cells induce fibrosis in the adjacent
278	unaffected alveolar structures in IPF patients. ¹⁵ This is consistent with our findings.
279	Moreover, we found infiltration of abundant S100A4-expressing cells in areas adjoining
280	the area of mature fibrosis. These findings also suggest that greater expression of S100A4
281	in lung tissues represents higher pro-fibrotic activity, which participates in the progression
282	of IPF.
283	In this study, serum S100A4 level was an independent prognostic factor in IPF
283 284	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease
283 284 285	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is
283 284 285 286	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is likely attributable to the higher disease progression rate. These results suggest that serum
283 284 285 286 287	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is likely attributable to the higher disease progression rate. These results suggest that serum S100A4 level as well as tissue S100A4 expression reflects the activity of lung fibrosis.
283 284 285 286 287 288	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is likely attributable to the higher disease progression rate. These results suggest that serum S100A4 level as well as tissue S100A4 expression reflects the activity of lung fibrosis. Interestingly, the combination of S100A4 and GAP system suggested that serum S100A4
283 284 285 286 287 288 288 289	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is likely attributable to the higher disease progression rate. These results suggest that serum S100A4 level as well as tissue S100A4 expression reflects the activity of lung fibrosis. Interestingly, the combination of S100A4 and GAP system suggested that serum S100A4 facilitates further prognostic stratification in the GAP I group of this study. However, the
283 284 285 286 287 288 288 289 290	In this study, serum S100A4 level was an independent prognostic factor in IPF patients. Higher serum S100A4 levels were independently associated with a higher disease progression rate. Therefore, the increased mortality risk in the S100A4 ^{high} subgroup is likely attributable to the higher disease progression rate. These results suggest that serum S100A4 level as well as tissue S100A4 expression reflects the activity of lung fibrosis. Interestingly, the combination of S100A4 and GAP system suggested that serum S100A4 facilitates further prognostic stratification in the GAP I group of this study. However, the sample size may have been too small to detect a significant difference. A prospective larger

useful prognostic biomarker that may help identify patients who may benefit from early

293	therapeutic interv	ention (e.g.,	pirfenidone	or nintedanib	therapy).
-----	--------------------	---------------	-------------	---------------	-----------

- 294 Several studies have evaluated the potential of S100A4 protein as a therapeutic target.
- In studies by Li et al. and Zhang et al., blockade with neutralizing antibodies against
- 296 S100A4 and pharmacologic inhibition of S100A4, respectively, attenuated pulmonary
- fibrosis in the bleomycin mouse model.^{16, 17} Our results suggest that IPF patients with
- 298 elevated serum S100A4 levels represent a phenotype associated with poor prognosis.

299 Therefore, these patients may possibly benefit from anti-S100A4 therapy. Stratification of

- 300 IPF patients based on S100A4 expression level seems a plausible strategy under the
- 301 paradigm of precision medicine that warrants further investigation.
- 302 The present study had several limitations. First, the retrospective design of the study
- 303 renders it vulnerable to several biases. Our institution is a regional ILD referral centre,
- 304 which may have introduced an element of selection bias. Second, baseline serum S100A4
- 305 levels were detectable in approximately 27% of IPF patients. It is possible that its clinical
- 306 usefulness is applicable only to a subgroup of IPF patients. Additionally, a larger study is
- 307 required to identify the prevalence of IPF patients with high serum S100A4 levels and its
- 308 optimal cut-off value for predicting outcome. Third, we did not evaluate serial changes in
- 309 serum S100A4 levels. Further investigation is required to determine whether serum
- 310 S100A4 levels in S100A4^{low} IPF patients increase over their clinical course, thereby

	clarifying the association between its changes and then chinical outcome. Future studies
312	should perform repeated measurements of serum S100A4 levels to unravel predictors of
313	the risk of disease progression or mortality. Finally, the different treatment regimens for
314	IPF may have affected the outcomes in our study population.
315	In conclusion, the present study indicated that serum S100A4 is a promising
316	non-invasive biomarker that may help predict disease progression/mortality in IPF patients.
317	This biomarker may facilitate risk stratification of patients. A prospective, multicentre
318	study is required to validate the clinical and pathophysiological utility of serum S100A4 in
319	IPF.
320	
321	ACKNOWLEDGMENT
322	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr.
322 323	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr. Yasunori Enomoto, and Dr. Sayomi Matsushima for technical advice pertaining to
322 323 324	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr. Yasunori Enomoto, and Dr. Sayomi Matsushima for technical advice pertaining to immunofluorescence, and Dr. Kazutaka Mori for statistical analysis.
322 323 324 325	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr. Yasunori Enomoto, and Dr. Sayomi Matsushima for technical advice pertaining to immunofluorescence, and Dr. Kazutaka Mori for statistical analysis. The authors also thank Yuka Morita and Chigusa Karasawa from the Medical & Biological
322 323 324 325 326	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr. Yasunori Enomoto, and Dr. Sayomi Matsushima for technical advice pertaining to immunofluorescence, and Dr. Kazutaka Mori for statistical analysis. The authors also thank Yuka Morita and Chigusa Karasawa from the Medical & Biological Laboratories Co. Ltd., Nagoya, Japan for measurement of serum S100A4 levels.
 322 323 324 325 326 327 	The authors thank Dr. Yochiro Aoshima, Dr. Katsuhiro Yoshimura, Dr. Koji Nishimoto, Dr. Yasunori Enomoto, and Dr. Sayomi Matsushima for technical advice pertaining to immunofluorescence, and Dr. Kazutaka Mori for statistical analysis. The authors also thank Yuka Morita and Chigusa Karasawa from the Medical & Biological Laboratories Co. Ltd., Nagoya, Japan for measurement of serum S100A4 levels.

329 This work was supported by a grant from the Japan Society for the Promotion of Science

330 (JP 18K15947 to H.H.).

331

000			• •
9999	Author	contri	hiitiance
·)·)/	Autior	COHUI	nanons.

- 333 N.A., H.H., N.E., T.F., N.I., Y.N., and T.S. designed the research; N.A., H.H., T.I., J.O.,
- K.S., H.Y., Y.S., M.K., M.K., K.F., N.E., T.F., N.I., Y.N., and T.S. contributed to the
- acquisition or analysis of the data; N, A. and H.H. wrote the initial and final drafts of the
- 336 manuscript; N.A., H.H., T.I., J.O., K.S., H.Y., Y.S., M.K., M.K., K.F., N.E., T.F., N.I., Y.N.,
- and T.S. revised the drafts of the manuscript; and all authors approved the final version of
- the manuscript.
- 339

Guarantor statement:

- H.H. had full access to all the data in the study and takes responsibility for the integrity ofthe data and the accuracy of the data analysis.
- 343

344 **Conflict of interest**:

- 345 This study was conducted as a collaboration between Hamamatsu University School of
- 346 Medicine and Medical and Biological Laboratories. Takuya Isayama, Jun Okada, and
- 347 Katsunori Sugiura are employees of Medical and Biological Laboratories. The remaining
- 348 authors declare no conflict of interests, including personal or financial support, and no

349 involvement with organization(s) that have financial interest in the subject matter.

350 **REFERENCES**

351 1 American Thoracic Society/European Respiratory Society International

- 352 Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This
- 353 joint statement of the American Thoracic Society (ATS), and the European Respiratory
- Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS
- 355 Executive Committee, June 2001. American journal of respiratory and critical care
- 356 medicine. 2002; **165**: 277-304.
- 2 Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV,
- Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J,
- Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE,
- 360 Jr., Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF,
- 361 Griss BS, Protzko SL, Schunemann HJ. An official ATS/ERS/JRS/ALAT statement:
- 362 idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management.
- American journal of respiratory and critical care medicine. 2011; **183**: 788-824.
- 364 3 Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG,
- 365 Ryerson CJ, Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV,
- 366 Collard HR, Cordeiro CR, Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K,
- 367 Hogaboam C, Inoue Y, Johkoh T, Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J,
- 368 Protzko S, Raghu G, Richeldi L, Sverzellati N, Swigris J, Valeyre D. An official American

369	Thoracic Society/European Respiratory Society statement: Update of the international
370	multidisciplinary classification of the idiopathic interstitial pneumonias. American journal
371	of respiratory and critical care medicine. 2013; 188: 733-48.
372	4 Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, Brozek JL,
373	Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL,
374	Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schunemann HJ.
375	An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic
376	Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. American journal
377	of respiratory and critical care medicine. 2015; 192: e3-19.
378	5 Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J,
379	Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ,
380	Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T,
381	Kazerooni EA, Kitaichi M, Knight SL, Mansour G, Nicholson AG, Pipavath SNJ,
382	Buendia-Roldan I, Selman M, Travis WD, Walsh S, Wilson KC. Diagnosis of Idiopathic
383	Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline.
384	American journal of respiratory and critical care medicine. 2018; 198 : e44-e68.
385	6 Ley B, Collard HR, King TE, Jr. Clinical course and prediction of survival in
386	idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine.

387 2011; **183**: 431-40.

22

388	7 Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK,
389	Kardatzke DR, Daigl M, Kirchgaessler KU, Lancaster LH, Lederer DJ, Pereira CA,
390	Swigris JJ, Valeyre D, Noble PW. Effect of pirfenidone on mortality: pooled analyses and
391	meta-analyses of clinical trials in idiopathic pulmonary fibrosis. The Lancet Respiratory
392	medicine. 2017; 5 : 33-41.
393	8 Fei F, Qu J, Li C, Wang X, Li Y, Zhang S. Role of metastasis-induced protein
394	S100A4 in human non-tumor pathophysiologies. Cell Biosci. 2017; 7: 64.
395	9 Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, Sherrill TP, Plieth
396	D, Neilson EG, Blackwell TS, Lawson WE. Contribution of epithelial-derived fibroblasts
397	to bleomycin-induced lung fibrosis. American journal of respiratory and critical care
398	medicine. 2009; 180 : 657-65.
399	10 Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF,
400	Konishi K, Yousem SA, Singh M, Handley D, Richards T, Selman M, Watkins SC, Pardo
401	A, Ben-Yehudah A, Bouros D, Eickelberg O, Ray P, Benos PV, Kaminski N. Inhibition and
402	role of let-7d in idiopathic pulmonary fibrosis. American journal of respiratory and critical
403	care medicine. 2010; 182 : 220-9.

404 11 Lawson WE, Polosukhin VV, Zoia O, Stathopoulos GT, Han W, Plieth D, Loyd JE,

405 Neilson EG, Blackwell TS. Characterization of fibroblast-specific protein 1 in pulmonary

406 fibrosis. American journal of respiratory and critical care medicine. 2005; **171**: 899-907.

23

407	12	Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG.
408	Identifi	cation and characterization of a fibroblast marker: FSP1. The Journal of cell
409	biology	r. 1995; 130 : 393-405.
410	13	Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that
411	fibrobla	asts derive from epithelium during tissue fibrosis. The Journal of clinical
412	investig	gation. 2002; 110 : 341-50.
413	14	Konigshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, Rose F,
414	Fink L,	Seeger W, Schaefer L, Gunther A, Eickelberg O. WNT1-inducible signaling
415	protein	-1 mediates pulmonary fibrosis in mice and is upregulated in humans with
416	idiopatl	nic pulmonary fibrosis. The Journal of clinical investigation. 2009; 119 : 772-87.
417	15	Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, Griffin T,
418	Benyun	nov A, Yang L, Bitterman PB, Henke CA. Calcium-binding protein S100A4 confers
419	mesenc	hymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. The Journal of
420	clinical	investigation. 2017; 127 : 2586-97.
421	16	Li Y, Bao J, Bian Y, Erben U, Wang P, Song K, Liu S, Li Z, Gao Z, Qin Z.
422	S100A4	4(+) Macrophages Are Necessary for Pulmonary Fibrosis by Activating Lung
423	Fibrobl	asts. Front Immunol. 2018; 9: 1776.
424	17	Zhang W, Ohno S, Steer B, Klee S, Staab-Weijnitz CA, Wagner D, Lehmann M,

425 Stoeger T, Konigshoff M, Adler H. S100a4 Is Secreted by Alternatively Activated Alveolar

- 426 Macrophages and Promotes Activation of Lung Fibroblasts in Pulmonary Fibrosis. Front
- 427 Immunol. 2018; **9**: 1216.
- 428 18 Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, Lee JS,
- 429 Maher TM, Wells AU, Antoniou KM, Behr J, Brown KK, Cottin V, Flaherty KR, Fukuoka
- 430 J, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kolb M, Lynch DA, Myers JL, Raghu G,
- 431 Richeldi L, Taniguchi H, Martinez FJ. Acute Exacerbation of Idiopathic Pulmonary
- 432 Fibrosis. An International Working Group Report. American journal of respiratory and
- 433 critical care medicine. 2016; **194**: 265-75.
- 434 19 Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, Poletti V,
- 435 Buccioli M, Elicker BM, Jones KD, King TE, Jr., Collard HR. A multidimensional index
- and staging system for idiopathic pulmonary fibrosis. Annals of internal medicine. 2012;
- 437 **156**: 684-91.
- 438 20 Fernandez IE, Eickelberg O. New cellular and molecular mechanisms of lung
- 439 injury and fibrosis in idiopathic pulmonary fibrosis. Lancet (London, England). 2012; 380:
 440 680-8.
- 441 21 Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. The New England
 442 journal of medicine. 2018; **378**: 1811-23.
- 443 22 King TE, Jr., Tooze JA, Schwarz MI, Brown KR, Cherniack RM. Predicting
- 444 survival in idiopathic pulmonary fibrosis: scoring system and survival model. American

- journal of respiratory and critical care medicine. 2001; **164**: 1171-81.
- 446 23 Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU. The
- relationship between individual histologic features and disease progression in idiopathic
- 448 pulmonary fibrosis. American journal of respiratory and critical care medicine. 2002; **166**:
- 449 173-7.
- 450

	IPF	HC	D malma
	n = 95	n = 50	<i>P</i> -value
Age, years	71 (64–77)	69 (66–73)	0.77
Male/female	83 (87.4)/12 (12.6)	42 (84)/8 (16)	0.62
Smoking habit,	19 (20.0) / 61 (64.2)/15		
never/former/current	(15.8)		
Diagnosis, clinical/pathologically proven	72 (75.8)/23 (24.2)		
Laboratory data			
KL-6, U/mL	924 (596–1390)		
PaO ₂ , Torr	76 (69–85)		
Pulmonary function test			
%FVC, %	74 (58–89)		
FEV _{1.0} /FVC, %	82 (79–89)		
%DLCO, %*	61.5 (44.8–86)		
GAP stage, I/II/III [§]	32 (47.8)/20 (29.9)/15 (22.4)		
Observation period, months	33.5 (15.1–50.1)		
Disease progression [‡]	71 (74.7)		
Progression-free survival, months	22.3 (11.3–44.4)		
Deterioration in lung function	41 (43.1)		
Death	30 (31.6)		
AE [‡]	26 (27.4)		
All-cause death [‡]	51 (53.7)		
Death from respiratory failure [‡]	46 (48.4)		

451 **Table 1 Baseline characteristics**

452 Data are presented as median (IQR), or number (%).

```
453 * n = 58
```

454 § n = 67

455 ‡ During observation period

456 IPF, idiopathic pulmonary fibrosis; HC, healthy control; KL-6, Krebs von den Lungen-6;

457 PaO₂, arterial oxygen pressure; %FVC, percent predicted forced vital capacity; FEV_{1.0},

458 forced expiratory volume 1.0 (sec); %DLCO, percent predicted diffusing capacity of the

459 lung carbon monoxide; GAP, Gender–Age–Physiology index; AE, acute exacerbation.

Variable	HR	95%CI	<i>P</i> -value
Univariate analysis			
Male (vs. female)	0.65	0.34-1.42	0.26
Age, years	1.03	0.99–1.06	0.10
UIP pattern on HRCT, yes (vs. no)	0.98	0.55-1.66	0.94
PaO_2 , per 1Torr increase	0.97	0.95–0.99	0.03*
%DLCO, per 1% increase [§]	0.97	0.96-0.99	< 0.01*
%FVC, per 1% increase	0.96	0.95–0.97	< 0.01*
KL-6, per 100 U/mL increase	1.01	0.99-1.03	0.36
Anti-fibrotic treatment, yes (vs. no)	0.79	0.42-1.49	0.47
Serum S100A4 ^{high} (vs. S100A4 ^{low})	1.85	1.11-3.02	0.02*
Serum S100A4, per 10 ng/mL increase	1.05	1.01 - 1.08	0.01*
Multivariate analysis model 1			
Male (vs. female)	0.84	0.42-1.90	0.66
Age, years	1.02	0.98-1.05	0.33
PaO ₂ , per 1Torr increase	0.98	0.96-1.004	0.12
%DLCO, per 1% increase [§]	0.98	0.96-0.99	0.02*
%FVC, per 1% increase	0.97	0.95–0.98	< 0.01*
Anti-fibrotic treatment, yes (vs. no)	0.97	0.59–1.56	0.89
S100A4 ^{high} (vs. S100A4 ^{low})	1.65	0.96–2.78	0.07
Multivariate analysis model 2			
Male (vs. female)	0.80	0.40-1.78	0.56
Age, years	1.02	0.98-1.05	0.30
PaO ₂ , per 1Torr increase	0.98	0.96-1.003	0.11
%DLCO, per 1% increase §	0.98	0.96-1.002	0.08
%FVC, per 1% increase	0.97	0.95–0.98	< 0.01*
Anti-fibrotic treatment, yes (vs. no)	0.95	0.58–1.53	0.82
Serum S100A4, per 10 ng/mL increase	1.06	1.02-1.10	0.01*

460 Table 2 Results of the Cox proportional hazards regression analysis of disease

462 *P < 0.05.

463 § n = 58

464 HR, hazard ratio; 95%CI, 95% confidence interval; UIP, usual interstitial pneumonia;
465 HRCT, high-resolution computed tomography; PaO₂, arterial oxygen pressure; %FVC,
466 predicted forced vital capacity; FEV_{1.0}, forced expiratory volume 1.0(sec); %DLCO,
467 predicted diffusing capacity of the lung carbon monoxide; KL-6, Krebs von den Lungen-6;
468 SP-D, surfactant protein D.

Variable	HR	95%CI	<i>P</i> -value
Univariate analysis			
Male (vs. female)	0.65	0.30-1.71	0.35
Age, years	1.04	1.01 - 1.09	0.02*
UIP pattern on HRCT, yes (vs. no)	0.98	0.53-1.91	0.95
PaO ₂ , per 1 Torr increase	0.94	0.91–0.97	< 0.01*
%DLCO, per 1% increase [§]	0.97	0.95-0.99	< 0.01*
%FVC, per 1 % increase	0.95	0.93-0.96	< 0.01*
KL-6, per 100 U/mL increase	1.02	0.99-1.04	0.15
Anti-fibrotic treatment, yes (vs. no)	0.68	0.39–1.20	0.19
Serum S100A4 high (vs. S100A4 low)	2.10	1.18-3.69	0.01*
Serum S100A4, per 10 ng/mL increase	1.07	1.03-1.10	< 0.01*
Multivariate analysis model 1			
Male (vs. female)	0.65	0.04-3.38	0.67
Age, years	1.03	0.97-1.09	0.29
PaO ₂ , per 1Torr increase	0.92	0.87–0.96	< 0.01*
%DLCO, per 1% increase [§]	0.98	0.95 - 1.002	0.06
%FVC, per 1% increase	0.96	0.94–0.99	< 0.01*
Anti-fibrotic treatment, yes (vs. no)	0.28	0.09–0.87	0.03*
Serum S100A4 high (vs. S100A4 low)	1.69	0.88-3.20	0.10
Multivariate analysis model 2			
Male (vs. female)	0.72	0.04-3.73	0.74
Age, years	1.06	0.99–1.13	0.08
PaO ₂ , per 1Torr increase	0.91	0.87–0.96	< 0.01*
%DLCO, per 1% increase §	0.98	0.95-1.001	0.06
%FVC, per 1% increase	0.96	0.94-0.99	< 0.01*
Anti-fibrotic treatment, yes (vs. no)	0.39	0.12-1.30	0.12
Serum S100A4, per 10 ng/mL increase	1.18	1.01-1.37	0.03*

469 Table 3 Results of the Cox proportional hazards regression analysis of mortality

470 *P < 0.05.

471 § n = 58

472 HR, hazard ratio; 95% CI, 95% confidence interval; UIP, usual interstitial pneumonia;

473 HRCT, high-resolution computed tomography; PaO₂, arterial oxygen pressure; %FVC,

474 predicted forced vital capacity; FEV_{1.0}, forced expiratory volume 1.0(sec); %DLCO,

475 predicted diffusing capacity of the lung carbon monoxide; KL-6, Krebs von den Lungen-6.

476 Figure legends

- 477 **Figure 1.** Baseline serum S100A4 levels
- 478 Serum S100A4 levels were undetectable in all HCs (approximately 0 ng/mL) but were
- detectable in 26 (27.3%) of the 95 IPF patients (P < 0.01). The median serum S100A4
- 480 level (range) in IPF patients was 0 (0–450) ng/mL.
- 481 IPF, idiopathic pulmonary fibrosis; HC, healthy control
- 482

483 **Figure 2.** S100A4 immunostaining in lung tissues from controls and IPF patients

- 484 A: A representative image of control lung tissues ($\times 100$ magnification, scale bar: 50 µm).
- 485 S100A4 is expressed in intra-alveolar macrophages (arrowhead); normal alveolar
- 486 structures show sparse expression of S100A4 (arrow).
- 487 B: A representative image of lung tissues of an IPF patient (×12.5 magnification, scale bar
- 488 500 μm). Numerous S100A4-expressing cells are present largely adjacent to areas of
- 489 mature fibrosis.
- 490 C: A representative image of lung tissues from an IPF patient (×100 magnification, scale
- 491 bar: 50 μm). Abundant S100A4-expressing cells (arrow) are present in the areas between
- the periphery of fibroblastic foci (arrowhead) and adjacent nearly intact alveolar structures.
- 493 The S100A4-expressing cell mostly exhibit spindle-like shape, a finding consistent with
- 494 fibroblasts.

- 496 **Figure 3.** Kaplan–Meier survival curve
- 497 A: PFS rate of IPF patients in the S100A4^{high} subgroup was significantly lower than that in
- 498 the S100A4^{low} subgroup (1-year cumulative PFS rate, 58.4% vs. 77.8%, respectively; P =
- 499 0.01).
- 500 B: Survival rate of IPF patients in the S100A4^{high} subgroup was significantly lower than
- that in the S100A4^{low} subgroup (2-year cumulative survival rate, 41.7% vs. 77.0%,
- 502 respectively; P < 0.01).
- 503 PFS, progression-free survival; IPF, idiopathic pulmonary fibrosis. S100A4^{high} subgroup
- had serum S100A4 level \geq 22.3 ng/mL; S100A4^{low} subgroup had serum S100A4 level <

505 22.3 ng/mL.

Control

IPF

Α

SUPPLEMENTARY INFORMATION

TITLE: Clinical significance of serum S100 calcium binding protein A4 in idiopathic

pulmonary fibrosis

Authors' full names:

Norimichi Akiyama¹

Hironao Hozumi 1*

Takuya Isayama²

Jun Okada²

Katsunori Sugiura²

Hideki Yasui¹

Yuzo Suzuki¹

Masato Kono³

Masato Karayama¹

Kazuki Furuhashi¹

Noriyuki Enomoto¹

Tomoyuki Fujisawa¹

Naoki Inui 1,4

Yutaro Nakamura¹

Takafumi Suda ¹

Authors' affiliation(s):

¹ Second Division, Department of Internal Medicine, Hamamatsu University School of

Medicine, 1-20-1 Handayama Higashiku, Hamamatsu 431-3192, Japan

² Medical & Biological Laboratories Co., Ltd., Nagoya, Japan

³ Department of Respiratory Medicine, Seirei Hamamatsu General Hospital, 2-12-12

Sumiyoshi, Naka Ward, Hamamatsu, 430-8558, Japan

⁴ Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of

Medicine, 1-20-1 Handayama Higashiku, Hamamatsu 431-3192, Japan

Supplementary Method S1- S100A4 immunohistochemistry and immunofluorescence Immunohistochemistry

The sections were deparaffinized and were then preheated for 30 min in 0.05% citrate buffer pH 6.0. After blocking endogenous peroxidase activity with 3% H₂O₂ for 15 min, the sections were incubated with a primary rabbit anti-human S100A4 monoclonal antibody (1:250; Anti-S100A4 antibody; Abcam, Cambridge, UK) or isotype control rabbit IgG for 1 hour. Subsequently, the sections were incubated with visualization reagent (Histofine simple stain MAX-PO [M]; Nichirei Co., Tokyo, Japan) for 30 min. The immunoreaction was visualized using 3, 3-diaminobenzidine chromogen and the sections were counterstained with hematoxylin.

Immunofluorescence

The sections were deparaffinized and subsequently preheated for 30 min in 0.05% citrate buffer pH 6.0. The sections were incubated with a blocking solution (Blocking One Histo; nacalai tesque., Kyoto, Japan) for 10 minutes and subsequently incubated with the primary antibody mixture of the anti-human S100A4 antibody (1:200) and a mouse anti-human alpha smooth muscle actin (αSMA) monoclonal antibody (1:200; anti-αSMA antibody; Abcam, Cambridge, UK) or the isotype control mixture of rabbit IgG and mouse IgG2a for 1 hour. Subsequently, the sections were incubated with DAPI (1:1000; sigma, New York, USA) with Alexa Fluor conjugated secondary antibodies (1:1000; Goat Anti-Rabbit IgG H&L Alexa Fluor® 555 and Goat Anti-Mouse IgG H&L Alexa Fluor® 647; Abcam, Cambridge, UK) for 1 hour. To reduce auto-fluorescence in the sections, an auto-fluorescence quenching kit was used (TrueVIEW[™] Autofluorescence Quenching Kit; Vector Laboratories, Inc., California, USA). The sections were visualized using a confocal microscope (Leica, Wetzlar, Germany).

	IPF (n = 95)	
Treatment for IPF, n (%)		
Any	65 (68.4)	
Anti-fibrotic	50 (52.6)	
Pirfenidone	44 (46.3)	
Nintedanib	12 (12.6)	
Anti-inflammatory		
Corticosteroids	32 (33.7)	
with immunosuppressant	13 (13.7)	
Cyclophosphamide	6	
Cyclosporin A	6	
Azathioprine	1	

 Table S1- Treatment for IPF during the observation period

Data are presented as n (%)

IPF, idiopathic pulmonary fibrosis

Characteristics	Correlation coefficient	<i>P</i> -value
Age, years	-0.09	0.52
Laboratory data		
KL-6, U/mL	0.02	0.84
PaO ₂ , Torr	0.15	0.15
Pulmonary function test		
%FVC, %	-0.07	0.88
FEV ₁ /FVC, %	0.02	0.88
%DLCO, % *	0.15	0.24

Table S2- Correlation between serum S100A4 levels and clinical parameters

KL-6, Krebs von den Lungen-6; PaO₂, arterial oxygen pressure; %FVC, predicted forced vital capacity; FEV_{1.0}, forced expiratory volume 1.0 (sec); %DLCO, predicted diffusing capacity of the lung carbon monoxide.

* n = 58

Table S3- Characteristics of IPF patients	disaggregated by S100A4 ^{high} and S100A4 ^{low}
subgroups	

Characteristics	$\begin{array}{l} S100A4^{high}\\ n=25 \end{array}$	$\begin{array}{c} S100A4^{low} \\ n=70 \end{array}$	<i>P</i> -value
Age, years	71 (64–77)	71 (65–77)	0.51
Male / female	20 (80)/5 (20)	63 (90)/7 (10)	0.29
Smoking habit, never / former or current	8 (32)/17 (68)	11 (16)/59 (84)	0.09
Diagnosis, clinical / biopsy proven	17 (68)/8 (32)	55 (79)/15 (21)	0.29
Laboratory test			
KL-6, U/mL	1030 (551–1605)	922 (606–1292)	0.51
PaO ₂ , Torr	80 (73–92)	75 (69–82)	0.04*
Pulmonary function test			
% FVC, %	63 (52–85)	77 (63–90)	0.10
FEV _{1.0} / FVC, %	86 (81–91)	82 (79–87)	0.09
%DLCO, % [‡]	71 (59–86)	61 (44–86)	0.33
GAP stage, I / II / III ¶	6 (50)/0 (0)/6 (50)	26 (47.3)/20 (36.4)/9 (16.4)	<0.01*
Observation period, months	19.7 (12.6–55.5)	35.9 (16.1–53.7)	0.29
Disease progression [§]	25 (100)	46 (65.7)	< 0.01*
Progression-free survival, months	14.8 (9.1–24.7)	24.8 (11.7–47.4)	0.10
Deterioration in lung function	15	26	
Death	10	20	
Acute exacerbation [§]	10 (40.0)	16 (22.9)	0.12
All-cause death §	21 (84.0)	30 (42.9)	< 0.01*
Death from respiratory failure §	20 (80.0)	26 (37.1)	< 0.01*

Data are presented as median (IQR) or number (%).

* P < 0.05, $\ddagger n = 58$, $\P n = 67$, § During observation period

S100A4^{high} subgroup had serum S100A4 level \geq 22.3 ng/mL; S100A4^{low} subgroup had serum S100A4 level < 22.3 ng/mL. IPF, idiopathic pulmonary fibrosis; KL-6, Krebs von den Lungen-6; SP-D, surfactant protein D; PaO₂, arterial oxygen pressure; %FVC, %predicted forced vital capacity; FEV_{1.0}, forced expiratory volume 1.0 (sec); %DLCO, %predicted diffusing capacity of the lung carbon monoxide; GAP, Gender–Age–Physiology.

Figure S1- Immunofluorescence images of lung

- A, B: Control lung tissues ($\times 100$ magnification, scale bar: 50 µm)
- C, D: Lung tissues from a patient with IPF (×12.5 magnification, scale bar 500 μ m)
- E, F: Lung tissues from a patient with IPF ($\times 100$ magnification, scale bar: 50 µm)
- Arrowhead: fibroblastic foci
- HE, Hematoxylin-Eosin (HE); Isotype, isotype IgG

Figure S3- Association of serum S100A4 levels with smoking habit

Serum levels of S100A4 in IPF patients showed no association with smoking habit.

Receiver operating characteristic curve of serum S100A4 for predicting disease progression within the first year from the date of diagnosis. The area under the curve (AUC) was 0.629. Using 22.3 ng/mL as the cut-off level of serum S100A4, the sensitivity and specificity were 42.9% and 83.3%, respectively.

Figure S5- Analyses regarding the combination of serum S100A4 and GAP staging system

A Cumulative survival rates according to IPF GAP stage

B Cumulative survival rates according to serum S100A4 status in GAP stage III group

