Predictors of Acute Exacerbation in Biopsy-proven Idiopathic Pulmonary Fibrosis

メタデータ	言語: eng			
出版者:				
公開日: 2021-07-01				
	キーワード (Ja):			
キーワード (En):				
作成者: Kishaba, Tomoo, Hozumi, Hironao, Fujisaw				
Tomoyuki, Nei, Yuichiro, Enomoto, Noriyuki, Sugiur				
Hiroaki, Kitani, Masashi, Suda, Takafumi				
	メールアドレス:			
	所属:			
URL	http://hdl.handle.net/10271/00003862			
This work is licensed under a Creative Common				

Attribution-NonCommercial-ShareAlike 3.0 International License.

2	
3	Authors' full names: Tomoo Kishaba, ¹ * Hironao Hozumi, ² * Tomoyuki Fujisawa, ² Yuichiro Nei, ³
4	Noriyuki Enomoto, ² Hiroaki Sugiura, ⁴ Masashi Kitani, ⁵ Takafumi Suda ²
5	
6	Authors' affiliation(s):
7	¹ Department of Respiratory Medicine, Okinawa Chubu Hospital, Okinawa, Japan
8	² Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine,
9	Hamamatsu, Japan
10	³ Department of Rheumatology, Teikyo University Chiba Medical Center, Chiba, Japan
11	⁴ Department of Radiology, National Defense Medical College, Saitama, Japan
12	⁵ Department of Pathology, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
13	
14	Corresponding author:
15	Tomoo Kishaba
16	Miyazato 281, Uruma City, Okinawa, 904-2293, Japan
17	Telephone: +81(98)973-4111
18	Fax: +81(98)974-5165
19	E-mail: <u>kishabatomoo@gmail.com</u>
	1

Title: Predictors of Acute Exacerbation in Biopsy-proven Idiopathic Pulmonary Fibrosis

21	Word count:
22	Abstract 239
23	Text 2723
24	
25	Abstract
26	Background: Acute exacerbation (AE) is a major cause of death in patients with idiopathic
27	pulmonary fibrosis (IPF). Current evidence on AE-IPF was largely based on clinical, rather than
28	pathological, analyses.
29	Methods: We investigated AE incidence and its predictors using clinical, radiological, and
30	pathological data of patients diagnosed with IPF by multi-disciplinary discussion.
31	This study, a secondary analysis of previous research, included 155 patients with IPF who underwent
32	surgical lung biopsy (SLB). Cumulative AE incidence was evaluated by the Kaplan-Meier method.
33	Predictors of AE-IPF were analyzed with a Fine-Gray subdistribution hazard model. Sub-analysis
34	was performed using propensity score-matching analysis.
35	Results: In this cohort, median age was 66 years and median percent-predicted forced vital capacity
36	82.8%. The cumulative AE incidence rates at 30-days and one-year post-SLB were 1.9% and 7.6%,
37	respectively. On multivariable analysis, a lower percent-predicted diffusing capacity of the lung for
38	carbon monoxide (%DL _{co}) (hazard ratio 0.98 per 1% increase, $P = 0.02$) and fibroblastic foci (FF)-

39	present (vs. absent; hazard ratio 3.01, $P = 0.04$) were independently associated with higher incidence
40	of AE. The propensity score-matching analysis with adjustment for age, gender, and %DLco revealed
41	that the cumulative AE incidence rate was significantly higher in the FF-present subgroup than in the
42	FF-absent subgroup (1-year incidence rate, 10.5% vs. 0% , respectively; $P = 0.04$ by Gray's test).
43	<i>Conclusions</i> : FF and %DL _{CO} were independent predictors of AE in patients with biopsy-proven IPF.
44	FF may be associated with the pathogenesis of AE-IPF.
45	
46	Key words:
47	Acute exacerbation; diffusing capacity of the lung for carbon monoxide; fibroblastic foci; idiopathic
48	pulmonary fibrosis
49	
50	Short title:
51	Predictors of AE in biopsy-proven IPF
52	
53	Abbreviations:
54	AE, acute exacerbation; CI, Confidence Interval; DLco, diffusing capacity of the lung for carbon
55	monoxide; FEV _{1.0} , forced expiratory volume 1.0 (sec); FF, fibroblastic foci; FVC, forced vital
56	capacity; GAP, Gender-Age-Physiology; HR, hazard ratio; HRCT, high-resolution computed
57	tomography; IIP, idiopathic interstitial pneumonia; ILD, interstitial lung disease; IPF, idiopathic

- 58 pulmonary fibrosis; IQR, interquartile range; KL-6, Krebs von den Lungen-6; MDD, multi-
- 59 disciplinary discussion; mMRC, modified Medical Research Council dyspnea scale; SLB, surgical
- 60 lung biopsy; UIP, usual interstitial pneumonia.

61 **1. Introduction**

62	Idiopathic pulmonary fibrosis (IPF), histopathologically characterized by usual interstitial pneumonia
63	(UIP) pattern, is a relentless interstitial lung disease (ILD) with a poor prognosis [1–6]. Some
64	patients with IPF may present with slowly progressive respiratory failure but others may develop
65	acute exacerbation (AE) unpredictably during the course of their chronic illness [7, 8]. AE is the
66	most critical determinant of mortality in patients with IPF [9]. Reportedly, median survival after
67	onset of AE is less than 3-4 months [9]. Therefore, delineation of the incidence and predictors of
68	AE-IPF are major unmet needs for clinicians who attempt to prevent and manage IPF.
69	Prior work has reported risk factors that predict AE-IPF based on the analysis of
70	clinical/physiological features, including low forced vital capacity (FVC) and low diffusing capacity
71	of the lung for carbon monoxide (DLco) [9-11]; it remains unclear whether specific pathological
72	features, including fibroblastic foci (FF) and honeycombing, are associated with AE-IPF. Recently,
73	we have developed a cloud-based integrated database containing the clinical, radiological,
74	pathological data, along with outcomes, for a large number of patients who had undergone surgical
75	lung biopsy (SLB) and had been diagnosed with an idiopathic interstitial pneumonias (IIP) by multi-
76	disciplinary discussion (MDD) [12]. We conducted secondary analyses using this database to
77	investigate AE incidence and its predictors in patients with biopsy-proven IPF.
78	

79 **2.** Patients and methods

 $\mathbf{5}$

80 **2.1. Study subjects**

81	We screened 465 patients with biopsy-proven IIP who had been registered in the cloud-based

- 82 integrated database [12]. The diagnosis/classification of an IIP was based on MDD using the clinical
- 83 and radiological data obtained within the three months prior to SLB and pathological data from SLB
- 84 (between April 2009 and March 2014). The study flow chart is presented in Figure 1.
- 85 Patients were included in the present study if they met a criteria of IPF based on the 2011
- 86 international guideline [4]. Patients were excluded from the study based on following criteria:
- 87 insufficient data (e.g. information regarding AE, pathological findings, treatment) or identification of
- 88 an evident cause of ILD after IPF diagnosis [e.g. a connective tissue disease (CTD), or an
- 89 inhalational/environmental exposure]. Consequently, 155 patients with biopsy-proven IPF were
- 90 enrolled in this retrospective study, which was approved by the institutional review boards of
- 91 Okinawa Chubu Hospital and Hamamatsu University School of Medicine (approval numbers 2018-

92 121 and 18-282, respectively).

93

94 **2.2. Definitions of AE**

AE was defined as events meeting all of the following criteria: 1) unexplained worsening or
development of dyspnea within the previous 30 days; 2) new bilateral ground-glass abnormality
and/or consolidation superimposed on a background reticular or honeycomb pattern on HRCT since
the preceding visit; and 3) exclusion of any known causes of acute worsening, including infection,

99	left heart failure, pulmonary embolism, and any identifiable cause of acute lung injury, in accordance
100	with routine clinical practice and microbiologic studies [8, 13–14].

101

102 **2.3. Data collection**

- 103 Data pertaining to the following variables were collected from the cloud-based integrated database
- 104 [12]: Clinical data, including age, gender, smoking history, %FVC, %DLco, serum Krebs von den
- 105 Lungen-6 (KL-6) levels, arterial oxygen pressure (PaO₂), modified Medical Research Council
- 106 dyspnea scale (mMRC), and gender-age-physiology (GAP) index [15]; high-resolution computed
- 107 tomography (HRCT) data; pathological data; treatment details; information regarding AE; survival
- 108 outcomes.
- 109

110 **2.4. Review of HRCT patterns**

111 Chest HRCT images obtained within the 3 months prior to SLB had been classified as UIP, possible

112 UIP, and inconsistent with UIP patterns according to the 2011 international guideline [4] by expert

- 113 chest radiologists at the previous study [12].
- 114

115 **2.5. Review of pathological patterns and findings**

116 In the current study, the number of patients with IPF whose SLB specimens were taken from a single

117 lobe was 19 (12.3 %) out of 155 patients with IPF and remaining 136 (87.7 %) were sampled from two

118	or more lobes. SLB specimens had been evaluated according to the 2011 international guidelines [4]
119	by expert lung pathologists during the previous study [12]. Pathological patterns were classified as
120	definite UIP, probable UIP, and possible UIP. FF was defined as convex sub-epithelial foci of
121	proliferating fibroblasts and myofibroblasts, typically existing among chronic fibrotic lesions.
122	Honeycombing was diagnosed by a combination of chronic fibrosis with alveolar remodeling and
123	variably sized cystic airspaces, often lined by bronchiolar epithelium and filled with mucus and
124	inflammatory cells. The lung pathologists evaluated whether each of these two pathological findings
125	was present or absent in any of SLB specimens from each patient.
126	
127	2.6. Statistical analysis
128	Data were expressed as median with [interquartile range (IQR)] or frequency and percent (%). The
129	Mann-Whitney U-test was used for comparing medians. Fisher's exact test was used for comparing
130	proportions among groups. The period of observation was calculated from the date of SLB until the
131	date of the last visit or death. AE-free survival was calculated from the date of SLB until the date of
132	AE onset or until the last visit in patients who did not develop AE. Patients were censored if AE did
133	not develop by October 2017, and death was treated as a competing event. Patient survival was
134	evaluated by the Kaplan-Meier method. Cox proportional hazards analyses with time-dependent
135	covariates were performed to identify prognostic factors associated with mortality. Age and gender

137	values of < 0.10 in univariate analyses. A cumulative incidence curve for AE was constructed,
138	treating death as a competing event. Subdistribution hazard analyses were performed, according to
139	the method of Fine and Gray, to identify predictive factors associated with AE development. Age,
140	gender, and all variables with P -values of < 0.10 in univariate analyses were included as potential
141	predictors in the multivariable analyses. Propensity scores, which are predicted probabilities of each
142	patient being assigned to either of two subgroups, were calculated using a logistic regression model
143	that was adjusted for clinical variables. Propensity score matching was performed using the
144	following algorithm: 1:1 nearest neighbour matching with a ± 0.05 caliper with no replacement.
145	In all analyses, $P < 0.05$ was considered statistically significant. All data were analysed using
146	commercially available software (JMP version 13.2.1, SAS Institute Inc., NC, USA) and R software
147	version 2.15.1 (The R Foundation for Statistical Computing, Austria).
148	
149	3. Results

150 **3.1. Characteristics**

151 Baseline characteristics of 155 patients with biopsy-proven IPF are summarized in Table 1.

Table 1. Baseline characteristics

	N=155		
Age at SLB, years	66 (61–70)		
Men / women	109 (70.3)/ 46 (29.7)		
Smoking, current / ex / never	17 (11.0)/ 92 (59.4)/ 46 (29.6)		
%FVC, %	82.8 (72.3–95.0)		
%DLco *, %	66.8 (52.8–82.6)		

KL–6, U/mL	1082 (714–1642)		
PaO ₂ , Torr	85.4 (76.8–92.8)		
$mMBC^{\$}$ and $0/1/2/2/4$	58 (40.3)/ 57 (39.6)/ 22 (15.3)/ 7 (4.9)/		
mwrke *, grade 0/ 1/ 2/ 3/ 4	0 (0)		
GAP stage [†] , I / II / III	102 (76.1)/ 30 (22.4)/ 2 (1.5)		
UIP pattern on HRCT, definite/ possible / inconsistent	27 (17.4)/ 120 (77.4)/ 8 (5.2)		
Pathological UIP pattern, definite/ probable/ possible	43 (27.7)/ 99 (63.9)/ 13 (8.4)		
Pathological finding			
FF, present/ absent	26 (16.8)/ 129 (83.2)		
Honeycombing, present/ absent	51 (32.9)/ 104 (67.1)		
Observation period, month	45.6 (18.6–59.5)		
Death [¶]	57 (36.8)		
AE-free period, month	44.1 (16.8–57.3)		
AE development	43 (27.7)		
within 30 days from SLB	3 (1.9)		
Treatment for IPF [‡]	90 (58.0)		
Corticosteroids	29 (18.7)		
Anti-fibrotic	64 (41.3)		
Pirfenidone	62		
Nintedanib	3		

154 Data are presented as n (%), median (interquartile range).

155 * n = 134; § n = 144; † n = 134; ¶ causes of death; Chronic respiratory failure, n = 24; AE, n = 18; lung 156 cancer, n = 8; infection, n = 3; others, n = 4; ‡ prior to first AE in patients who developed AE, during 157 observation period in those who did not develop AE.

158 SLB, surgical lung biopsy; %FVC, percent predicted forced vital capacity; %DLco, percent predicted

159 diffusing capacity of the lung carbon monoxide; KL-6, Krebs von den Lungen-6; PaO₂, arterial

160 oxygen pressure; mMRC, modified Medical Research Council dyspnea scale; GAP, Gender-Age-

161 Physiology index; HRCT, high-resolution computed tomography; UIP, usual interstitial pneumonia;

162 FF, fibroblastic foci; AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis.

163

164 The median age at the time of SLB was 66 years, and 70.3% of the patients were men. With respect

- 165 to pulmonary function tests, the median %FVC and %DLco were 82.8% and 66.8%, respectively.
- 166 Almost all of the patients were categorized as GAP I (76.1%) or II (22.4%).
- 167 Out of the 155 patients, 43 (27.7 %) developed AE after a median AE-free period of 44.1 months

168	and 3 (1.9	%) developed	within 30 days after SL	B. The one-year cu	mulative AE incidence rate was
-----	------------	--------------	-------------------------	--------------------	--------------------------------

- 169 7.6% (Figure 2A). Among 155 patients, 57 (36.8%) died during a median observation period of 45.6
- 170 months. Twenty-four deaths occurred due to chronic respiratory failure, eighteen were attributed to
- 171 AE, eight were attributed to lung cancer that developed after IPF diagnosis, and seven were
- 172 attributed to other causes. The 5-year cumulative survival rate was 56.9% (Figure 2B).
- 173

3.2. Predictors of AE

175 The results of sub-distribution hazards analysis of AE development are presented in Table 2.

	Table 2.	e 2. Results of Fine-G	ray sub-distribution	hazards analysis for	AE developmen
--	----------	------------------------	----------------------	----------------------	----------------------

		-	
	HR	95% CI	<i>P</i> -value
Univariate			
Age at SLB, years	1.02	0.98-1.06	0.30
Men (vs. women)	0.88	0.47-1.67	0.70
Smoking, current or ex (vs. never)	1.08	0.56-2.09	0.81
%FVC, per 1% increase	0.99	0.98-1.01	0.40
%DLco [†] , per 1% increase	0.98	0.97–0.99	0.02**
KL-6, per 100 U/mL increase	1.00	0.99-1.02	0.85
PaO ₂ , per 1 Torr increase	1.00	0.98-1.03	0.82
mMRC $^{\$}$, grade 2/3/4 (vs. grade 0/1)	1.61	0.77-3.37	0.21
UIP pattern on HRCT, definite (vs. possible/inconsistent)	1.60	0.80-3.20	0.19
Pathological UIP pattern, definite (vs. probable/possible)	0.55	0.25-1.19	0.13
Pathological finding			
FF-present (vs. absent)	2.32	0.89-6.04	0.08*
Honeycombing-present (vs. absent)	1.58	0.79-3.13	0.20
Treatment for IPF [¶]			
Corticosteroids, yes (vs. no)	0.94	0.45-1.93	0.86
Anti-fibrotic treatment, yes (vs. no)	0.98	0.54-1.77	0.95
Multivariate			
Age, years	1.01	0.97-1.05	0.65
Men (vs. women)	1.24	0.58-2.64	0.58

	%DLCO, per 1% increase	0.98	0.97–0.99	0.02**
	FF-present (vs. absent)	3.01	1.06-8.55	0.04**
177	* $P < 0.10$ (potential predictor), ** $P < 0.05$, † n = 134, § n = 144;	prior to	first AE in pat	ients who
178	developed AE or during observation period in those who did not de	velop Al	Е.	
179	AE, acute exacerbation; HR, hazard ratio; CI, confidence interval;	SLB, sur	gical lung	
180	biopsy; %FVC, percent predicted forced vital capacity; %DLco, pe	rcent pre	edicted diffusir	ig capacity
181	of the lung carbon monoxide; KL-6, Krebs von den Lungen-6; PaC	2, arteria	ıl oxygen press	sure;
182	mMRC, modified Medical Research Council dyspnea scale; HRCT	', high-re	solution comp	uted
183	tomography; UIP, usual interstitial pneumonia; FF, fibroblastic foci	; IPF, idi	iopathic pulmo	nary
184	fibrosis.			
186				
187				
100		•	1 1 4 5 1	1
188	In univariate analyses, presence of pathological FF was positively a	associate	d with AE dev	elopment,
189	and higher %DL co was negatively associated with AE. On multiva	riable an	alvsis lower%	DLco
100		liuoie uli	ary 518, 10 (e r)	02200
190	[hazard ratio (HR) 0.98 per 1% increase, $P = 0.02$] and FF-present	(vs. abse	ent; HR 3.01, <i>P</i>	P = 0.04)
191	remained independently associated with incidence of AE.			
109				
192				
193	3.3. Subgroup-analysis based on FF-grade			
194	The baseline characteristics of patients with biopsy-proven IPF dise	aggregat	ed into the FF-	present
105		T 11	1 551 1'	D
195	subgroup and the FF-absent subgroup are presented in Supplement	ary Table	e 1. The media	n PaO ₂
196	level in the FE-present subgroup was significantly higher than that	in the FF	F-absent subord	011p (86 5
100	iever in the FF present subgroup was significantly ingher than that		uosent suogi	
197	Torr vs. 83.4 Torr, respectively; $P = 0.04$). However, no significant	between	-group differen	nces were
198	observed with respect to other characteristics. Cumulative AE incid	lence in	the FF-present	subgroup
100		0.40 5:		
199	was significantly higher than that in the FF-absent subgroup ($P = 0$.048; Fig	gure 3A).	

200	On the basis of propensity scores that were adjusted for age, gender, and %DLco, 19 matched pairs
201	were made between the FF-present or FF-absent subgroups. The characteristics of the two matched
202	subgroups were well-balanced (Supplementary Table 2). Cumulative AE incidence in the matched
203	FF-present subgroup was significantly higher than that in the FF-absent subgroup ($P = 0.04$; Figure
204	3B).
205	

- 206 **3.4. Prognostic factors**
- 207 The results of Cox proportional hazards analysis (with time-dependent covariates) of mortality are

208 presented in Table 3.

209 Table 3. Results of Cox regression hazard analysis for mortality

	HR	95% CI	<i>P</i>-value
Univariate			
Age at SLB, years	1.05	1.02-1.09	<0.01**
Men (vs. women)	1.47	0.78-2.77	0.24
Smoking, current or ex (vs. never)	1.12	0.62-2.01	0.72
%FVC, per 1% increase	0.98	0.97–0.99	0.01**
%DLco [†] , per 1% increase	0.99	0.97-1.01	0.11
KL-6, per 100 U/mL increase	0.99	0.98-1.02	0.77
PaO ₂ , per 1 Torr increase	0.99	0.97-1.02	0.52
mMRC $^{\$}$, grade 2/3/4 (vs. grade 0/1)	1.56	0.84–2.93	0.16
UIP pattern on HRCT, definite (vs. possible/inconsistent)	2.48	1.42-4.33	<0.01**
Pathological UIP pattern, definite (vs. probable/possible)	0.66	0.35-1.24	0.19
Pathological finding			
FF-present (vs. absent)	2.20	0.93-5.08	0.07*
Honeycombing-present (vs. absent)	1.65	0.90-3.06	0.09*
Treatment for IPF [¶]			
Corticosteroids, yes (vs. no)	1.10	0.56-2.14	0.78
Anti-fibrotic treatment, yes (vs. no)	0.95	0.55-1.65	0.86
AE development, yes (vs. no)	21.1	12.2–36.6	<0.01**

	Multivariate			
	Age at SLB, years	1.06	1.01-1.11	0.04**
	Men (vs. women)	2.32	1.10-4.88	0.03**
	%FVC, per 1% increase	0.97	0.95-0.99	<0.01**
	UIP pattern on HRCT, definite (vs. possible/inconsistent)	1.69	0.90-3.16	0.09*
	FF-present (vs. absent)	2.90	1.07-7.88	0.04**
	Honeycombing-present (vs. absent)	1.49	0.73-3.07	0.28
	AE development, yes (vs. no)	20.2	11.5–35.3	<0.01**
210	* $P < 0.10$ (potential prognostic factor), ** P < 0.05, † n = 134, §	n = 144;	¶ prior to first.	AE in
211	patients who developed AE or during observation period in those	who did	not develop A	Е.
212	HR, hazard ratio; CI, Confidence Interval; SLB, surgical lung bio	psy; %F	VC, percent pr	edicted

213 forced vital capacity; %DLco, percent predicted diffusing capacity of the lung carbon monoxide; KL-

6, Krebs von den Lungen-6; PaO₂, arterial oxygen pressure; mMRC, modified Medical Research

215 Council dyspnea scale; HRCT, high-resolution computed tomography; UIP, usual interstitial

216 pneumonia; FF, fibroblastic foci; AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis.

218 219

220 On univariate analysis, higher age, lower %FVC, UIP pattern on HRCT (vs. possible UIP pattern),

221 FF-present (vs. absent), pathological honeycombing-present (vs. absent), and AE development had

222 potential associations with mortality. On multivariable analysis, higher age (HR 1.06 per one-year

223 increase, P = 0.04), men (vs. women; HR 2.32, P = 0.03), lower %FVC (HR 0.97 per 1% increase, P

224 < 0.01), FF-present (vs. absent; HR 2.90, P = 0.04), and AE development (vs. no development; HR

225 20.2, P < 0.01) were independently associated with increased mortality.

226

227 **4. Discussion**

In this study, the 30-day and one-year cumulative incidences of AE post-SLB among patients with

229 biopsy-proven IPF were 1.9% and 7.6%, respectively. Multivariable analyses revealed independent

230	associations of pathological FF with both AE and mortality. Lower $\% DL_{CO}$ was an independent
231	physiological predictor of AE-IPF. To our knowledge, this is the first study that has identified
232	predictive factors for AE on the basis of clinical, radiological, and pathological data, in a large cohort
233	of patients with biopsy-proven IPF.
234	In IPF, the histopathologic features of the UIP pattern include patchy involvement of lung
235	parenchyma by fibrosis, honeycombing, and FF [3, 4, 6]. Prior work has demonstrated that increased
236	numbers of FF were associated with increased risks of lung function deterioration and mortality [16-
237	18]. In this context, we hypothesized that FF might be associated with the risk of AE development.
238	Our qualitative evaluation in this study was able to demonstrate that the presence of FF was
239	independently associated with increased mortality in patients with biopsy-proven IPF. We further
240	found that the presence or absence of FF in SLB specimens was an independent predictive factor of
241	AE-IPF development, which is the major finding of this study. Development of AE had a strong
242	negative association with survival among patients with biopsy-proven IPF in this study. Therefore, it
243	is likely that the increased mortality risk in those who had FF is attributable to the higher AE
244	incidence rate. However, in this study, most of patients with IPF (83.2%) had a pathological finding
245	of FF-present. Whether the number/extent of FF is correlated with the risk of AE development
246	remains unclear. Future studies are needed using more precise quantitative methods for evaluating
247	the amount of FF (e.g., analytical imaging software, or the use of artificial intelligence to process
248	histopathology).

249	Annual AE incidence rates in patients with IPF have been reported to be approximately
250	4% to 14%, with variability due to differences in the study populations (e.g., severity, ethnicity) and
251	the definitions of AE [9–11, 13, 14]. Prior incidence rates were mainly derived from the cohorts of
252	patients with clinical diagnoses of IPF who exhibited an UIP pattern on HRCT, rather than those
253	with biopsy-proven IPF who did not. The present study included only biopsy-proven IPF cases, most
254	of which exhibited "possible UIP" pattern on HRCT, and the annual AE incidence was comparable
255	to those reported previously [9-11, 13, 14]. Interestingly, the sub-analyses, including propensity
256	score-matching analysis, demonstrated that the one-year cumulative AE incidence rate of the FF-
257	present subgroup was $9-10.5\%$ while that of the FF-absent subgroup was extremely low (0%). This
258	suggests that patients without FF may represent a phenotype that is at reduced risk for AE or may be
259	ILD other than IPF. In this study, patients who developed a CTD after IPF diagnosis were excluded
260	(Figure 1) and no significant difference was observed between the FF-present and FF-absent IPF
261	subgroups with respect to CTD-associated autoantibody status (Supplementary Table 3). Therefore,
262	it is unlikely that patients without FF are more closely associated with autoimmunity compared with
263	those with FF. Prior in vitro evidence suggests that activated fibroblasts/myofibroblasts play a key
264	role in fibrogenesis in IPF, and that increased amounts of FF reflect higher fibrotic activity [19].
265	Although the etiology of AE-IPF remains unclear, it is hypothesized that AE may be a subsequent
266	acceleration of an underlying chronic fibrotic process caused by acute direct stress to the lung,
267	including infection and surgical intervention [8, 9]. Considering the role of FF in the fibrogenesis,

the results of this study generate a hypothesis that FF is associated with the pathogenesis of AE-IPFas well. Further studies are needed to evaluate this hypothesis.

270	AE development is thought to be more common in patients with physiologically and
271	functionally advanced stages of IPF [9, 20]. Indeed, studies have reported risk factors of AE-IPF,
272	including low FVC, low DLco, low 6-minute-walk distance, and increased dyspnea [9, 14, 21-23].
273	However, in the present study, lower FVC was not independently associated with higher AE
274	incidence. This discrepancy might have arisen from the unique population of this study, which
275	included only patients with relatively earlier stages of IPF (the median %FVC > 80%), excluding
276	those who could not have safely undergone SLB. On the other hand, the present study demonstrated
277	that lower %DLco was an independent physiological predictor of AE-IPF, in addition to the
278	pathological predictor of FF, suggesting that physicians should be more alert to the risk of AE
279	development in patients who had lower %DLco and/or FF-present on lung biopsy. A recent clinical
280	trial (INPULSIS) has demonstrated that nintedanib, an anti-fibrotic agent, may reduce the risk of AE-
281	IPF [13]. The secondary analysis of INPULSIS also suggested that nintedanib therapy improved
282	post-AE survival rates [24]. Further study is needed to determine whether earlier pharmacological
283	intervention may be warranted for patients with IPF who have FF and reduced $\% DL_{\rm CO}$.
284	Although SLB is necessary for the accurate diagnosis of IPF in patients who are clinically
285	suspected of having an IIP/ILD but do not exhibit UIP pattern on HRCT [4, 6], surgical intervention-
286	triggered AE is associated with high post-operative mortality [9]. However, there have been few

287	studies on SLB-related AE incidence in patients with IPF. Park et al. in their study reported the post-
288	SLB AE incidence in 140 patients diagnosed with IPF by SLB from 1990 to 2003, as 1.4% [25]. Our
289	finding that 1.9% of patients with IPF developed AE within 30 days from SLB was very similar to
290	the decade-old study by Park et al. The updated data from the present study will provide valuable
291	information for attending physicians and patients, especially those with suspected IPF, when
292	contemplating indications for SLB.
293	The present study had several limitations. Firstly, the retrospective design of the study
294	renders it vulnerable to several biases. For instance, original data of patients with biopsy-proven IPF
295	were collected from hospitals that participated in the previous multicenter research [12], which may
296	have introduced an element of selection bias. Secondly, the diagnosis of IPF was based on the 2011
297	international guideline [4], but not the 2018 international guideline [6]. Thirdly, the diagnosis of AE-
298	IPF was made by attending physicians in each hospital, but not based on central review. In addition,
299	a revised definition and diagnostic criteria for AE-IPF was proposed in 2016 [9]. These factors may
300	have influenced the study results. Fourthly, we could not evaluate the reproducibility of FF-grade
301	scored by pathologists. Finally, the treatment regimens for IPF (e.g., induction of anti-fibrotic agent)
302	were not standardized among institutions, which may have affected outcomes in our study
303	population.
004	

5. Conclusions

306	In conclusion, the present study indicated that, in patients with biopsy-proven IPF, presence of
307	pathologic FF and lower %DL $_{\rm CO}$ are independent risk factors that may prove helpful in predicting
308	AE development, which may facilitate risk stratification of IPF patients by their treating physicians.
309	Also, this study suggested that FF may play a role in the pathogenesis of AE-IPF. A prospective
310	study would be required to validate these hypotheses.
311	
312	Author contributions:
313	*T.K. and *H.H. contributed equally to this work.
314	T.K. and H.H. designed the research; T.K., H.H., T.F., Y.N., N.E., H.S., M.K., and T.S. contributed to
315	the acquisition or analysis of the data; T.K. and H.H. wrote the initial and final drafts of the
316	manuscript; T.K., H.H., T.F., Y.N., N.E., H.S., M.K., and T.S. revised the drafts of the manuscript;
317	and all authors approved the final version of the manuscript.
318	
319	Guarantor statement:
320	All authors had full access to all the data in the study and take responsibility for the integrity of the
321	data and the accuracy of the data analysis.
322	
323	Conflict of interest:
324	The authors have no conflicts of interest.

325	
326	Funding:
327	None
328	
329	Acknowledgements:
330	Medical English support was provided by Dr. Rita McGill from the University of Chicago
331	

332 **References**

- 333 [1] Ley B, Collard HR, King TE, Jr. Clinical course and prediction of survival in idiopathic
- 334 pulmonary fibrosis. Am. J. Respir. Crit. Care Med 2011;183 (4): 431-40.
- 335 [2] American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment.
- 336 International consensus statement. American Thoracic Society (ATS), and the European Respiratory
- 337 Society (ERS). Am. J. Respir. Crit. Care Med 2000;161 (2Pt1) : 646-64.
- 338 [3] American Thoracic Society/European Respiratory Society International Multidisciplinary
- 339 Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the
- 340 American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the
- ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am. J. Respir.
- 342 Crit. Care Med 2002;165 (2) : 277-304.
- 343 [4] Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF,
- 344 Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho
- 345 C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE, Jr., Kondoh Y, Myers J, Muller
- 346 NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ. An
- 347 official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for
- diagnosis and management. Am. J. Respir. Crit. Care Med 2011; 183 (6):788-824.
- 349 [5] Travis WD, Costabel U, Hansell DM, King TE, Jr., Lynch DA, Nicholson AG, Ryerson CJ,
- 350 Ryu JH, Selman M, Wells AU, Behr J, Bouros D, Brown KK, Colby TV, Collard HR, Cordeiro CR,

- 351 Cottin V, Crestani B, Drent M, Dudden RF, Egan J, Flaherty K, Hogaboam C, Inoue Y, Johkoh T,
- 352 Kim DS, Kitaichi M, Loyd J, Martinez FJ, Myers J, Protzko S, Raghu G, Richeldi L, Sverzellati N,
- 353 Swigris J, Valeyre D. An official American Thoracic Society/European Respiratory Society
- 354 statement: Update of the international multidisciplinary classification of the idiopathic interstitial
- 355 pneumonias. Am. J. Respir. Crit. Care Med 2013;188 (6) :733-48.
- 356 [6] Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V,
- 357 Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK,
- 358 Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight
- 359 SL, Mansour G, Nicholson AG, Pipavath SNJ, Buendia-Roldan I, Selman M, Travis WD, Walsh S,
- 360 Wilson KC. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical
- 361 Practice Guideline. Am. J. Respir. Crit. Care Med 2018; 198 (5):e44-e68.
- 362 [7] Kondoh Y, Taniguchi H, Kawabata Y, Yokoi T, Suzuki K, Takagi K. Acute exacerbation in
- 363 idiopathic pulmonary fibrosis. Analysis of clinical and pathologic findings in three cases. Chest
- 364 1993;103 (6):1808-12.
- 365 [8] Collard HR, Moore BB, Flaherty KR, Brown KK, Kaner RJ, King TE, Jr., Lasky JA, Loyd
- 366 JE, Noth I, Olman MA, Raghu G, Roman J, Ryu JH, Zisman DA, Hunninghake GW, Colby TV, Egan
- 367 JJ, Hansell DM, Johkoh T, Kaminski N, Kim DS, Kondoh Y, Lynch DA, Muller-Quernheim J, Myers
- 368 JL, Nicholson AG, Selman M, Toews GB, Wells AU, Martinez FJ. Acute exacerbations of idiopathic
- 369 pulmonary fibrosis. Am. J. Respir. Crit. Care Med 2007; 176 (7):636-43.

- 370 [9] Collard HR, Ryerson CJ, Corte TJ, Jenkins G, Kondoh Y, Lederer DJ, Lee JS, Maher TM,
- Wells AU, Antoniou KM, Behr J, Brown KK, Cottin V, Flaherty KR, Fukuoka J, Hansell DM,
- Johkoh T, Kaminski N, Kim DS, Kolb M, Lynch DA, Myers JL, Raghu G, Richeldi L, Taniguchi H,
- 373 Martinez FJ. Acute Exacerbation of Idiopathic Pulmonary Fibrosis. An International Working Group
- 374 Report. Am. J. Respir. Crit. Care Med 2016;194 (3):265-75.
- 375 [10] Kondoh Y, Taniguchi H, Katsuta T, Kataoka K, Kimura T, Nishiyama O, Sakamoto K,
- 376 Johkoh T, Nishimura M, Ono K, Kitaichi M. Risk factors of acute exacerbation of idiopathic
- pulmonary fibrosis. Sarcoidosis Vasc. Diffuse Lung Dis 2010;27 (2):103-10.
- 378 [11] Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary
- 379 fibrosis: incidence, risk factors and outcome. Eur. Respir. J 2011;37 (2): 356-63.
- 380 [12] Fujisawa T, Mori K, Mikamo M, Ohno T, Kataoka K, Sugimoto C, Kitamura H, Enomoto N,
- 381 Egashira R, Sumikawa H, Iwasawa T, Matsushita S, Sugiura H, Hashisako M, Tanaka T, Terasaki Y,
- 382 Kunugi S, Kitani M, Okuda R, Horiike Y, Enomoto Y, Yasui H, Hozumi H, Suzuki Y, Nakamura Y,
- 383 Fukuoka J, Johkoh T, Kondoh Y, Ogura T, Inoue Y, Hasegawa Y, Inase N, Homma S, Suda T.
- 384 Nationwide cloud-based integrated database of idiopathic interstitial pneumonias for
- multidisciplinary discussion. Eur. Respir. J 2019;53 (5) pii: 1802243.
- 386 [13] Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, Cottin V, Flaherty
- 387 KR, Hansell DM, Inoue Y, Kim DS, Kolb M, Nicholson AG, Noble PW, Selman M, Taniguchi H,
- 388 Brun M, Le Maulf F, Girard M, Stowasser S, Schlenker-Herceg R, Disse B, Collard HR. Efficacy

- and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med 2014; 370 (22):2071-82.
- 390 [14] Kishaba T, Tamaki H, Shimaoka Y, Fukuyama H, Yamashiro S. Staging of acute
- exacerbation in patients with idiopathic pulmonary fibrosis. Lung 2014; 192 (1) : 141-9.
- 392 [15] Ley B, Ryerson CJ, Vittinghoff E, Ryu JH, Tomassetti S, Lee JS, Poletti V, Buccioli M,
- 393 Elicker BM, Jones KD, King TE, Jr., Collard HR. A multidimensional index and staging system for
- idiopathic pulmonary fibrosis. Ann. Intern. Med 2012; 156 (10): 684-91.
- 395 [16] King TE, Jr., Schwarz MI, Brown K, Tooze JA, Colby TV, Waldron JA, Jr., Flint A,
- 396 Thurlbeck W, Cherniack RM. Idiopathic pulmonary fibrosis: relationship between histopathologic
- features and mortality. Am. J. Respir. Crit. Care Med 2001;164 (6): 1025-32.
- 398 [17] Nicholson AG, Fulford LG, Colby TV, du Bois RM, Hansell DM, Wells AU. The
- 399 relationship between individual histologic features and disease progression in idiopathic pulmonary
- 400 fibrosis. Am. J. Respir. Crit. Care Med 2002; 166 (2):173-7.
- 401 [18] Enomoto N, Suda T, Kato M, Kaida Y, Nakamura Y, Imokawa S, Ida M, Chida K.
- 402 Quantitative analysis of fibroblastic foci in usual interstitial pneumonia. Chest 2006; 130 (1):22-9.
- 403 [19] Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N. Engl. J. Med 2018; 378
- 404 (19):1811-23.
- 405 [20] Kondoh Y, Cottin V, Brown KK. Recent lessons learned in the management of acute
- 406 exacerbation of idiopathic pulmonary fibrosis. Eur. Respir. Rev 2017;26 (145) pii: 170050.
- 407 [21] Collard HR, Yow E, Richeldi L, Anstrom KJ, Glazer C. Suspected acute exacerbation of

409	[22]	Johannson KA, Vittinghoff E, Lee K, Balmes JR, Ji W, Kaplan GG, Kim DS, Collard HR.
410	Acute e	exacerbation of idiopathic pulmonary fibrosis associated with air pollution exposure. Eur.
411	Respir.	J 2014; 54 (4):1124-31.
412	[23]	Mura M, Porretta MA, Bargagli E, Sergiacomi G, Zompatori M, Sverzellati N, Taglieri A,
413	Mezzas	salma F, Rottoli P, Saltini C, Rogliani P. Predicting survival in newly diagnosed idiopathic
414	pulmor	nary fibrosis: a 3-year prospective study. Eur. Respir. J 2012; 40 (1):101-9.
415	[24]	Collard HR, Richeldi L, Kim DS, Taniguchi H, Tschoepe I, Luisetti M, Roman J, Tino G,
416	Schlen	ker-Herceg R, Hallmann C, du Bois RM. Acute exacerbations in the INPULSIS trials of
417	ninteda	nib in idiopathic pulmonary fibrosis. Eur. Respir. J 2017;49 (5) pii: 1601339.
418	[25]	Park JH, Kim DK, Kim DS, Koh Y, Lee SD, Kim WS, Kim WD, Park SI. Mortality and risk
419	factors	for surgical lung biopsy in patients with idiopathic interstitial pneumonia. Eur. J.
420	Cardio	thorac. Surg 2007;31 (6):1115-19.
421		

idiopathic pulmonary fibrosis as an outcome measure in clinical trials. Respir. Res 2013; 14:73.

	FF-present, n = 129	FF-absent, $n = 26$	P value
Age at SLB, years	66 (62–70)	65 (60–69)	0.25
Men / women	92 (71.3)/ 37 (28.7)	17 (65.4)/ 9 (34.6)	0.64
Smoking, current or ex	93 (72.7)	16 (61.5)	0.34
%FVC, %	82.8 (73.4–94.4)	81.9 (64.6–96.7)	0.54
$\% DL co^{\dagger}, \%$	66.0 (53.7-81.8)	67.0 (47.2–84.9)	0.75
PaO ₂ , Torr	86.5 (77.8–93.4)	83.4 (71.3–87.4)	0.04*
GAP stage [§] , I / II / III	85 (75.2)/ 26 (23.0)/ 2 (1.8)	17 (81.0)/ 4 (19.0)/ 0 (0)	0.64
UIP pattern on HRCT, definite/ possible/ inconsistent	25 (19.4)/ 99 (76.7)/ 5 (3.9)	2 (7.7)/ 21 (80.8)/ 3 (11.5)	0.13
Observation period, month	45.7 (17.6–57.6)	54.0 (23.1–76.1)	0.15
Death	51 (39.5)	6 (23.1)	0.13
AE-free period, month	43.0 (16.5–55.1)	47.7 (17.5–70.4)	0.18
AE development	39 (30.2)	4 (15.4)	0.15
Treatment for IPF [¶]	74 (57.4)	16 (61.5)	0.83
Corticosteroids	23 (17.8)	6 (23.1)	0.58
Anti-fibrotic	54 (41.9)	10 (38.5)	0.83
Pirfenidone	52	10	
Nintedanib	3	0	

Supplementary Table 1. Comparison between FF-present and FF-absent subgroups

Data are presented as n (%), median (interquartile range).

* P < 0.05, † n = 134; § n = 134; ¶ prior to first AE in patients who developed AE, during observation period in those who did not develop AE.

FF, fibroblastic foci; SLB, surgical lung biopsy; %FVC, percent predicted forced vital capacity; %DLco, percent predicted diffusing capacity of the lung carbon monoxide; PaO₂, arterial oxygen pressure; GAP, Gender–Age–Physiology index; UIP, usual interstitial pneumonia; HRCT, high-resolution computed tomography; AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis.

	FF-present, $n = 19$	FF-absent, $n = 19$	P value
Age at SLB, years	62 (59–68)	64 (60–69)	0.67
Men / women	13 (68.4)	12 (63.2)	1.00
Smoking, current or ex	12 (63.2)	12 (63.2)	1.00
%FVC, %	83.6 (78.2–93.8)	80.4 (64.6–96.6)	0.41
%DLco, %	64.2 (55.5–81)	67.8 (47.3–85.7)	0.82
PaO ₂ , Torr	87.5 (80.5–100)	83.5 (73.6–87.2)	
GAP stage, I / II / III	16 (84.2)/ 3 (15.8)/ 0 (0)	16 (84.2)/ 3 (15.8)/ 0 (0)	1.00
UIP pattern on HRCT, definite/	2(10.5)/17(90.5)/0(0)	1(52)/16(942)/2(105)	0.21
possible/ inconsistent	2 (10.5)/ 17 (89.5)/ 0(0)	1 (5.3)/ 10 (84.2)/ 2(10.5)	0.51
Observation period, month	43.0 (12.0–53.8)	50.2 (24.6-83.7)	0.08
Death	5 (26.3)	4 (21.1)	1.00
AE-free period, month	36.7 (12.0–53.8)	50.2 (24.6-81.4)	0.07
AE development	5 (26.3)	2 (10.5)	0.40
Treatment for IPF [¶]	8 (42.1)	12 (63.2)	0.33
Corticosteroids	5 (26.3)	4 (21.1)	1.00
Anti-fibrotic	3 (15.8)	8 (42.1)	0.15
Pirfenidone	3	8	
Nintedanib	1	0	

Supplementary Table 2. Comparison between propensity score-matched FF-present and FF-absent subgroups

Data are presented as n (%), median (interquartile range).

¶ prior to first AE in patients who developed AE, during observation period in those who did not develop AE.

FF, fibroblastic foci; SLB, surgical lung biopsy; %FVC, percent predicted forced vital capacity; %DLco, percent predicted diffusing capacity of the lung carbon monoxide; PaO₂, arterial oxygen pressure; GAP, Gender–Age–Physiology index; UIP, usual interstitial pneumonia; HRCT, high-resolution computed tomography; AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis.

	FF-present subgroup		FF-absent subgroup		
-	ab (+)	ab (-)	ab (+)	ab (-)	<i>P</i> -value
$RF \ge 2 \times$ upper limit of normal,	7(61)	102 (02 6)	1(A A)	22(05.6)	1.00
n = 133*	7 (0.4)	105 (95.0)	1 (4.4)	22 (93.0)	1.00
ANA, n = 54*	7 (15.9)	37 (84.1)	4 (40.0)	6 (60.0)	0.19
≥1:320 titer	1 (2.3)	43 (97.7)	1 (10)	9 (90)	0.34
Centromere pattern	0 (0)	54 (100)	0 (0)	10 (100)	—
Nucleolar pattern	6 (13.6)	38 (86.4)	3 (30.0)	7 (70.0)	0.34
Anti-dsDNA, $n = 87^*$	0 (0)	71 (100)	0 (0)	16 (100)	—
Anti-Sm, n = 88*	1 (1.4)	70 (98.6)	0 (0)	17 (100)	1.00
Anti-SSA/Ro n = 128*	1(0.9)	105 (99.1)	1 (4.6)	21 (95.5)	0.32
Anti-SSB/La, n = 120*	0 (0)	98 (100)	0 (0)	22 (100)	—
Anti-Scl-70, n = 133*	0 (0)	110 (100)	0 (0)	23 (100)	_
Anti-RNP, n = 119*	0 (0)	98 (100)	0 (0)	21 (100)	_
Anti-Jo-1, n = 134*	0 (0)	110 (100)	0 (0)	24 (100)	—
Anti-ARS, $n = 14^*$	0 (0)	12 (0)	0 (0)	2 (100)	_
Anti-CCP, $n = 104*$	2 (2.3)	85 (97.7)	1 (5.9)	16 (94.1)	0.42
Anti-PM/Scl, $n = 10^*$	0 (0)	9 (100)	0 (0)	1 (100)	_
Anti-MDA5, $n = 5^*$	0 (0)	4 (100)	0 (0)	1 (100)	_
Any of autoantibodies, n = 146	15 (12.4)	106 (87.6)	6 (24.0)	19 (76.0)	0.21

Supplementary Table 3. Frequency of autoantibody positivity

Data are presented as n (%).

*the number of patients in whom a specific autoantibody was tested.

FF, fibroblastic foci; ab, autoantibody; RF, rheumatoid factor; ANA, anti-nuclear antibody; dsDNA, double stranded DNA; Sm, smith; RNP, ribonucleoprotein; ARS, aminoacyl tRNA synthetase; CCP, cyclic citrullinated peptide; PM/Scl, polymyositis/scleroderma; MDA5, melanoma differentiation-associated gene 5.

1 **Figure 1.** Study flow chart

- 4 discussion; AE, acute exacerbation; ILD, interstitial lung disease, UIP, usual interstitial pneumonia;
- 5 HRCT, high-resolution computed tomography

7 Figure 2. Cumulative AE incidence (A) and survival (B) of patients with biopsy-proven IPF

9 A: The 1-year cumulative AE incidence rate of the study cohort was 7.6%.

10 B: The 5-year cumulative survival rate of the study cohort was 56.9%

11 AE, acute exacerbation; IPF, idiopathic pulmonary fibrosis

12

13 **Figure 3.** Cumulative AE incidence rates according to FF-grade

15 A: Before propensity score-matching; the 1-year and 2-year cumulative AE incidence rates of the

17 incidence rates of the FF-absent subgroup were 0% and 4.5%, respectively.

18 B: After propensity score-matching; the 1-year and 2-year cumulative AE incidence rates of the

19 FF-present subgroup were 10.5% and 16.9%, respectively. The 1-year and 2-year cumulative AE

20 incidence rates of the FF-absent subgroup were 0% and 0%, respectively.

21

