

Investigation of factors affecting the clinical results of arthroscopic anterior talofibular ligament repair for chronic lateral ankle instability

出版者: 公開日: 2021-07-01 キーワード (Ja): キーワード (En):	メタデータ	言語: English
キーワード (Ja): キーワード (En):		出版者:
キーワード (En):		公開日: 2021-07-01
		キーワード (Ja):
		キーワード (En):
作成者: Hanada, Mitsuru, Hotta, Kensuke, Matsuyama,		作成者: Hanada, Mitsuru, Hotta, Kensuke, Matsuyama,
Yukihiro		Yukihiro
メールアドレス:		メールアドレス:
所属:		所属:
URL http://hdl.handle.net/10271/00003863	URL	http://hdl.handle.net/10271/00003863

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	Investigation of factors affecting the clinical results of arthroscopic anterior talofibular ligament
2	repair for chronic lateral ankle instability
3	
4	
5	
6	Abbreviations:
7	ATFL, anterior talofibular ligament
8	CLAI, chronic lateral ankle instability
9	TTA, talar tilt angle
10	TAD, Talar anterior drawer distance
11	CFL, calcaneofibular ligament
12	MRI, magnetic resonance imaging
13	JSSF, Japanese Society for Surgery of the Foot

14 Abstract

15

16	The study aimed to examine the factors affecting the clinical outcomes of anterior talofibular ligament
17	(ATFL) repair surgery with arthroscopy for chronic lateral ankle instability (CLAI). From 2015 to
18	2018, 18 consecutive patients diagnosed with CLAI after conservative treatment for 3 months or more
19	underwent arthroscopic ATFL repair surgery using the Broström-Gould technique. Clinical scores at
20	1 year postoperatively involving the Karlsson scoring scale (median, 85 points) and the Japanese
21	Society for Surgery of the Foot scale (median, 90 points) were significantly improved compared to
22	preoperative scores (median, 50 and 66 points; p<0.001 and <0.001, respectively). The median period
23	to start jogging was 2 and 6 months for patients without (n=11) and with cartilage damage (n=7),
24	respectively, showing significant difference (p=0.006). Four patients with cartilage damage could not
25	return to pre-injury sports within 1 year after surgery.
26	In the stress radiographs, the talar tilt angle (TTA) significantly improved from median of 6°
27	preoperatively to a median of 3.5° postoperatively (p=0.002). Talar anterior drawer distance (TAD)
28	significantly improved from a median of 6.5 mm preoperatively to a median of 4.1 mm postoperatively
29	(p<0.001). There was no significant difference in TTA and TAD between patients without and with
30	cartilage damage.

31 The period to start jogging postoperatively was significantly correlated with postoperative TTA and

32	TAD. It was suggested that the	postoperative	period to start activitie	s was delayed because o	f the larger

- 33 postoperative TTA and TAD.
- 34 According to our results, the postoperative period to start activities may depend on cartilage damage
- 35 and instability remaining postoperatively.
- 36
- 37 Level of Clinical Evidence: Level 4, case control study
- 38 Keywords: anterior talofibular ligament, arthroscopy, ankle sprain, chronic lateral ankle instability

39 Introduction

40

An ankle sprain is a common trauma in sports injuries, and often involves the ankle lateral ligament 4142complex injuries (1,2). The anterior talofibular ligament (ATFL) and the calcaneofibular ligament 43(CFL) are damaged in severe ankle sprains. Primary treatments for ankle sprains are conservatively 44 performed, and more than 80% of patients are healed and return to activities such as sports (3,4). 45However, in 5% to 20% of patients with ankle sprains, chronic lateral ankle instability (CLAI) remains 46 despite adequate conservative treatment (3,4). For the evaluation of CLAI, the anterior drawer and 47talar tilt tests are important clinical examinations (5,6). In addition, stress radiography is also 48performed. However, although several studies have shown the reliability and efficacy of stress 49radiography for evaluating CLAI, the reproducibility and normal findings in stress radiographs are 50controversial (5,7,8). On the other hand, it has a relatively low sensitivity (56% for ATFL and 50% for 51CFL), although magnetic resonance imaging (MRI) has extreme specificity (100% for ATFL and 83% 52for CFL) for examination of the ankle ligament injury (3,4). However, MRI is a reliable and valid 53decisional tool to choose the surgical technique for CLAI (9). Furthermore, MRI is useful for the 54evaluation of not only ATFL rupture but also additional pathologies, such as osteochondral lesions. 55Several previous studies have reported about invasive open surgeries as treatment for CLAI (10-13). 56However, these techniques are not anatomical and require sacrifice of normal structures, such as the

57	peroneal tendon. Subsequently, Broström described the surgical procedure of suturing the ATFL
58	remnant for the treatment of ATFL injury (14). Furthermore, Gould et al. reported the augmentation
59	method with the inferior extensor retinaculum (IER), and Karlsson et al. showed the method of
60	suturing and reattaching the ATFL using drill holes of the lateral malleolus (15,16). Recently, the
61	Broström and Karlsson procedures with arthroscopy have been developed, which showed good clinical
62	outcomes (17-23) and more complications (24). Its major technique is to reattach the ATFL to the
63	fibula with the suture anchor by drilling at the lateral malleolus of the fibula and augmentation with
64	the IER using the other anchor. These arthroscopic procedures were associated with equal or better
65	clinical results compared to the conventional open methods (23,25,26). In our hospital, arthroscopic
66	surgery for patients with symptoms of CLAI was performed. However, several patients developed
67	chronic pain of the ankle after exercise resumption, which resulted in a delay in return to sports. To
68	our knowledge, there were no previous reports that showed the obvious causes of delaying the return
69	to sports after arthroscopic surgery.
70	Therefore, the purpose of this study was to examine the factors influencing postoperative clinical
71	outcomes, particularly including clinical scores and the postoperative period to return to sports activity,
72	after arthroscopic repair surgery of ATFL for CLAI. We hypothesized that the outcomes after
73	arthroscopic surgery for CLAI were related to the amount of instability of the ankle and cartilage
74	damage of the ankle joints.

76

77Patients and methods

78

79 This study was performed prospectively. Approval from the ethics committee was obtained before 80 conducting the study and informed consent was obtained from the patients. From April 2015 to March 81 2018, consecutive patients, who underwent arthroscopic surgery for CLAI and who were followed up 82 for one year or more after surgery, were included in this study. All patients had been playing sports 83 activities. A preoperative diagnosis of CLAI was made through a clinical examination, stress 84 radiography, and MRI. All patients initially underwent conservative treatments, such as 85 immobilization, orthosis, bandage, and rehabilitation, for 3 months or more. Two patients who had 86 osteoarthritis or a previous history of surgical treatment in their ankles were excluded. Eighteen 87 patients (9 men, 9 women) with a median age of 26 (range, 14-60) years were analyzed in this study. 88 Surgery, measurement with stress radiographs, and analysis of data described below were performed by one senior orthopedic surgeon (M.H.) in this study. 89 90

91Clinical and radiographic assessments

92Patients had pain or tenderness on the lateral side of the ankle, feeling of instability, and a positive

93	anterior drawer test finding. Stress radiography including assessment of varus and anterior drawer
94	stress was performed with the Telos Stress Device (Aimedic MMT, Japan). Patients sat with their knee
95	flexed at approximately 20°. The heel was fixed with a swivel clamp, then the pressure roll was placed
96	at approximately 5 cm above the lateral malleolus or anterior of the tibia. Pressure load for routine
97	examination was defined as 15daN. The talar tilt angle (TTA) was defined as the angle between the
98	tibial plafond and talus in the frontal view, and the talar anterior drawer distance (TAD) was defined
99	as the distance between the posterior horn of the tibial plafond and talus dome in the lateral view.
100	CLAI was diagnosed in patients with TTA >2° compared to that on the contralateral side, or TAD of
101	>5 mm. Clinical scores were evaluated using the Karlsson scoring scale and the Japanese Society for
102	Surgery of the Foot (JSSF) ankle-hindfoot scale (27-29). All patients underwent clinical and
103	radiographic examinations before surgery and at one year after surgery. The time when patients could
104	start usual exercises, such as jogging, and when patients could return to sports activity was examined.
105	
106	Surgical techniques and postoperative procedures
107	Arthroscopic evamination was performed first. Articular cartilage injury of the tibia and talus was

- 107 Arthroscopic examination was performed first. Articular cartilage injury of the tibia and talus was
- 108 evaluated. When cartilage damage was present, debridement and micro-fracture procedures were
- 109 performed regardless of the size of cartilage lesion.
- 110 ATFL was performed according to the techniques described by Matsui et al. (20). Briefly, arthroscopic

111	ATFL repair was performed with one anchor, which was placed between the center and the superior
112	side of the fibular footprint of the ATFL. Then, the Gould augmentation procedure was performed
113	subcutaneously, with the other anchor introduced to the proximal aspect of the first anchor. The
114	superficial and deep surfaces of the IER were released from the arthroscopic portal, then one limb of
115	the suture anchor was passed into the IER from the deep layer to the superficial layer. Finally, the IER
116	was tied to the lateral malleolus with the sliding knot technique.
117	The postoperative procedure included immobilization with a plaster slab, and the patients were
118	encouraged to perform non-weight-bearing gait for two weeks after surgery. At 3 weeks
119	postoperatively, range of motion exercises and weight-bearing gait were allowed if there was no
120	articular cartilage injury. When articular cartilage damage was observed, weight-bearing gait was only
121	started at 5 weeks postoperatively. An ankle orthosis was used for six months after removal of the
122	plaster slab.
123	Patients were allowed to start jogging when swelling and effusion of the ankle were absent. Then,
124	sports activities were started if the patients had no discomfort and no recurrence of swelling and
125	effusion.
126	
127	Statistical analysis

Statistical analyses were conducted using SPSS version 25 (IBM, Armonk, NY, USA). The Wilcoxon 128

129	signed-rank test was used to compare the preoperative and postoperative values among all 18 cases.
130	The Spearman rank correlation coefficient test was used to examine the correlation between the time
131	to start activities and the background data of patients. The Mann-Whitney U test was used to compare
132	the characteristics of patients with and without cartilage damage. In either statistical analysis, a
133	significance probability of \leq 5% was regarded as significantly different.
134	

Results

138	In the stress radiographs using the Telos Stress Device, the TTA significantly improved from the
139	preoperative median of 6° (range, 3° to 14°) to the postoperative median of 3.5° (range, 0° to 6°)
140	(p =0.002). The TAD significantly improved from the preoperative median of 6.5 mm (range, 4.5-8.5
141	mm) to the postoperative median of 4.1 (range, 1.0 to 6.0) mm (p <0.001). Karlsson scores also
142	improved in all cases, and patients obtained a postoperative median score of 85 (range, 50 to 100)
143	points from the preoperative median score of 50 (range, 34 to 70) points (p<0.001). JSSF scale scores
144	improved in all cases, and patients obtained a postoperative median score of 90 (range, 87 to 90) points
145	from the preoperative median score of 66 (range, 28 to 69) points (p <0.001). The median period when
146	all patients could start jogging postoperatively was 3 (range, 1 to 6) months.

147	Arthroscopic examinations showed cartilage damage in 7 patients, including 6 talar lesions, and 1 talar
148	and tibial plafond lesion. There was no significant difference in age, sex, body height, weight, and
149	body mass index (BMI) between patients with and without cartilage damage (Table 1). In patients
150	without cartilage damage, the median period to start jogging was 2 (range, 1 to 3) months. In patients
151	with cartilage damage, the median period to start jogging was 6 (range, 3 to 6) months. There was a
152	significant difference in the time to start jogging between patients with and without cartilage damage
153	(p=0.006). Furthermore, in patients without cartilage damage, the postoperative median period to
154	return to sports was 4 (range, 2 to 4) months. However, 3 of seven patients with cartilage damage
155	could not return to pre-injury sports activity level within 1 year after surgery.
156	The postoperative period when patients could start jogging or return to sports was not correlated with
156 157	The postoperative period when patients could start jogging or return to sports was not correlated with age, body height, weight, BMI, preoperative TAA, and preoperative TAD (Table 2). However,
157	age, body height, weight, BMI, preoperative TAA, and preoperative TAD (Table 2). However,
157 158	age, body height, weight, BMI, preoperative TAA, and preoperative TAD (Table 2). However, postoperative TTA and TAD had a significant high correlation coefficient with postoperative period to
157 158 159	age, body height, weight, BMI, preoperative TAA, and preoperative TAD (Table 2). However, postoperative TTA and TAD had a significant high correlation coefficient with postoperative period to start jogging (correlation coefficient: 0.576 and 0.633, respectively) (Table 2), and the period to return
157 158 159 160	age, body height, weight, BMI, preoperative TAA, and preoperative TAD (Table 2). However, postoperative TTA and TAD had a significant high correlation coefficient with postoperative period to start jogging (correlation coefficient: 0.576 and 0.633, respectively) (Table 2), and the period to return

Discussion

165	On the basis of the results of this study, the clinical scores after ATFL repair surgery using the
166	arthroscopic procedure for CLAI were improved; however, the periods to start jogging and to return
167	to preoperative sports were affected by cartilage damage. Broström reported an anatomical procedure
168	that used an open technique for repairing ATFL using its remnant, and then his procedure was accepted
169	as a gold standard technique for ATFL repair (14). Gould et al. modified this technique with the
170	reinforcement of the IER (15). Then, the open Broström-Gould procedure was considered the most
171	fundamental method for the treatment of CLAI (30). In all published articles, good postoperative
172	results have been reported for the open Broström-Gould procedure. Recently, many authors have
173	proposed performing the Broström procedure completely with arthroscopy (17-25). In arthroscopic
174	surgery, postoperative pain is minimal and the return to activities of daily living is early compared to
175	that with conventional open techniques (25). In this study, the JSSF scale and Karlsson scores were
176	improved in all patients after surgery; thus, the arthroscopic procedure was considered sufficiently
177	useful for treating CLAI.
178	However, there was no report about the relationship between clinical outcomes after surgery for CLAI
179	and cartilage damage of the ankle. In this study, the postoperative time to start jogging in patients with
180	cartilage damage (median; 6, range; 3 to 6 months) was obviously delayed compared to that of patients
181	without cartilage damage, even considering the postoperative course that the time to non-weight
182	bearing gait was delayed for two weeks. Furthermore, there were two patients who could not return to

184associated with CLAI is an important factor that delays the start of activities, and arthroscopic 185examination of cartilage damage is considered meaningful to predict the postoperative time to start 186 jogging and return to sports. 187 The postoperative period to start jogging or return to sports was not correlated to age, body height, 188 weight, BMI, and preoperative examination of stress radiograph. However, postoperative TTA and 189 TAD had a significant high correlation coefficient with postoperative period to start jogging, and the 190 period to return to sports was significantly correlated with postoperative TAD. It was suggested that 191the postoperative period to start activities may depend on the instability remaining postoperatively. 192Relatively large TTA and TAD after surgery may be a problem because of our surgical technique. 193However, Yasui et al. reported that successful outcomes of ATFL repair procedures may depend on the 194 ligament quality and patient characteristics (31). Therefore, in patients in whom return to sports 195activities was delayed, large postoperative TTA and TAD might be related to not only preoperative 196 instability and surgical technique but also poor quality of residual ATFL. We consider that, if TTA and 197 TAD are relatively large as confirmed by fluoroscopy during surgery, or patients have a significant 198 joint laxity, augmentation surgery with artificial ligament or reconstruction surgery should be

their pre-injury sports activity level within one year after surgery. Therefore, cartilage damage

199 performed.

183

200 There are several limitations to this study. First, it involved a relatively small number of patients.

201	Large-scale studies should be performed in the future to validate our findings. Second, repeat
202	arthroscopic examination was not performed in patients with cartilage damage. MRI was performed
203	postoperatively in only a few patients. Thus, the differences in clinical outcomes due to the extent of
204	postoperative repair of cartilage are unclear. Third, the quality of ATFL was not investigated
205	intraoperatively. The postoperative outcomes may improve if a procedure for evaluating the quality of
206	ATFL during surgery is established. However, despite our appreciation of the limitations of our
207	investigation, we believe that the results of this study could be useful in the future development of
208	prospective cohort studies and randomized controlled trials that focus on the association between
209	cartilage damage in patients who undergo arthroscopic surgery for CLAI and the postoperative period
210	to return to sports.
211	In conclusion, the clinical scores after arthroscopic repair of ATFL for CLAI were good. Our data also
212	revealed that the postoperative period to start jogging and to return to sports was delayed in patients
213	with cartilage damage and with ankle instability remaining. In the future, further research including
214	the extent of cartilage damage and treatment procedure is expected.
215	
216	References

218 1. DiGiovanni CW, Brodsky A. Current concepts: lateral ankle instability. Foot Ankle Int

- 219 2006;27(10):854-866.
- 220 2. Ferran NA, Maffulli N. Epidemiology of sprains of the lateral ankle ligament complex. Foot Ankle
- 221 *Clin* 2006;11(3):659–662.
- 3. Chan KW, Ding BC, Mroczek KJ. Acute and chronic lateral ankle instability in the athlete. Bull
- 223 *NYU Hosp Jt Dis* 2011;69(1):17–26.
- 4. DiGiovanni BF, Partal G, Baumhauer JF. Acute ankle injury and chronic lateral instability in the
- 225 athlete. Clin Sports Med 2004;23(1):1–19.
- 5. Usuelli FG, Mason L, Grassi M, Maccario C, Ballal M, Molloy A. F Lateral ankle and hindfoot
- instability: a new clinical based classification. *Foot Ankle Surg* 2014;20(4):231–236.
- 6. van Dijk CN, Lim LS, Bossuyt PM, Marti RK. Physical examination is sufficient for the diagnosis
- of sprained ankles. J Bone Joint Surg Br 1996;78(6):958–962.
- 230 7. Frost SC, Amendola A. Is stress radiography necessary in the diagnosis of acute or chronic ankle
- 231 instability? *Clin J Sport Med* 1999;9(1):40–45.
- 8. Ray RG, Christensen JC, Gusman DN. Critical evaluation of anterior drawer measurement methods
- 233 in the ankle. Clin Orthop Relat Res 1997;(334):215–224.
- 9. Morvan A, Klouche S, Thes A, Hardy P, Bauer T. Reliability and validity of preoperative MRI for
- 235 surgical decision making in chronic lateral ankle instability. Eur J Orthop Surg Traumatol.
- 236 2018;28(4):713-719.

- 237 10. Becker HP, Ebner S, Ebner D, Benesch S, Frössler H, Hayes A, Gritze G, Rosenbaum D. 12-year
- 238 outcome after modified Watson-Jones tenodesis for ankle instability. Clin Orthop Relat Res
- 239 1999;(358):194–204.
- 240 11. Castaing J. Apropos of severe sprains of the ankle. Sem Hop Ther Paris 1962;(38):535–537.
- 12. Evans DL. Recurrent instability of the ankle; a method of surgical treatment. *Proc R Soc Med*1953;46(5):343–344.
- 243 13. Snook GA, Chrisman OD, Wilson TC. Long-term results of the Chrisman-Snook operation for
- reconstruction of the lateral ligaments of the ankle. J Bone Joint Surg Am 1985;67(1):1–7.
- 245 14. Broström L. Sprained ankles. VI. Surgical treatment of "chronic" ligament ruptures. Acta Chir
- 246 Scand 1966;132(5):551–565.
- 247 15. Gould N, Seligson D, Gassman J. Early and late repair of lateral ligament of the ankle. Foot Ankle
- 248 1980;1(2):84–89.
- 249 16. Karlsson J, Bergsten T, Lansinger O, Peterson L. Reconstruction of the lateral ligaments of the
- ankle for chronic lateral instability. *J Bone Joint Surg Am* 1988;70(4):581–588.
- 251 17. Corte-Real NM, Moreira RM. Arthroscopic repair of lateral ankle instability. *Foot Ankle Int*252 2009;30(3):213–217.
- 253 18. Cottom JM, Rigby RB. The "all inside" arthroscopic Broström procedure: a prospective study of
- 40 consecutive patients. *J Foot Ankle Surg* 2013;52(5):568–574.

- 255 19. Kim ES, Lee KT, Park JS, Lee YK. Arthroscopic anterior talofibular ligament repair for chronic
- ankle instability with a suture anchor technique. *Orthopedics* 2011;34(4):1–5.
- 257 20. Matsui K, Takao M, Miyamoto W, Innami K, Matsushita T. Arthroscopic Broström repair with
- 258 Gould augmentation via an accessory anterolateral port for lateral instability of the ankle. Arch Orthop
- 259 *Trauma Surg* 2014;134(10):1461–1467.
- 260 21. Takao M, Matsui K, Stone JW, Glazebrook MA, Kennedy JG, Guillo S, Calder JD, Karlsson J;
- 261 Ankle Instability Group. Ankle Instability Group. Arthroscopic anterior talofibular ligament repair for
- lateral instability of the ankle. *Knee Surg Sports Traumatol Arthrosc* 2016;24(4):1003–1006.
- 263 22. Vega J, Golanó P, Pellegrino A, Rabat E, Peña F. Allinside arthroscopic lateral collateral ligament
- repair for ankle instability with a knotless suture anchor technique. Foot Ankle Int 2013;34(12):1701–
- 265 1709.
- 266 23. Yeo ED, Lee KT, Sung IH, Lee SG, Lee YK. Comparison of all-inside arthroscopic and open
- 267 techniques for the modified Broström procedure for ankle instability. Foot Ankle Int
- 268 2016;37(10):1037–1045.
- 269 24. Lopes R, Andrieu M, Cordier G, Molinier F, Benoist J, Colin F, Thès A, Elkaïm M, Boniface O,
- 270 Guillo S, Bauer T; French Arthroscopic Society. Arthroscopic treatment of chronic ankle instability:
- 271 Prospective study of outcomes in 286 patients. Orthop Traumatol Surg Res. 2018;104(8S):S199-S205.
- 272 25. Matsui K, Takao M, Miyamoto W, Matsushita T. Early recovery after arthroscopic repair compared

to open repair of the anterior talofibular ligament for lateral instability of the ankle. Arch Orthop

- 274 *Trauma Surg* 2016;136(1):93–100.
- 275 26. Guelfi M, Zamperetti M, Pantalone A, Usuelli FG, Salini V, Oliva XM. Open and arthroscopic
- 276 lateral ligament repair for treatment of chronic ankle instability: A systematic review. Foot Ankle Surg.
 277 2018;24(1):11-18.
- 278 27. Karlsson J, Rudholm T, Bergsten T, Faxén E, Styf J. Early range of motion training after ligament
- 279 reconstruction of the ankle. *Knee Surg Sports Traumatol Arthrosc* 1995;3(3):173–177.
- 280 28. Niki H, Aoki H, Inokuchi S, Ozeki S, Kinoshita M, Kura H, Tanaka Y, Noguchi M, Nomura S,
- 281 Hatori M, Tatsunami S. Development and reliability of a standard rating system for outcome
- 282 measurement of foot and ankle disorders I: development of standard rating system. J Orthop Sci
- 283 2005;10(5):457-465.
- 284 29. Niki H, Aoki H, Inokuchi S, Ozeki S, Kinoshita M, Kura H, Tanaka Y, Noguchi M, Nomura S,
- 285 Hatori M, Tatsunami S. Development and reliability of a standard rating system for outcome
- 286 measurement of foot and ankle disorders II: interclinician and intraclinician reliability and validity of
- 287 the newly established standard rating scales and Japanese Orthopaedic Association rating scale. J
- 288 Orthop Sci 2005;10(5):466–474.
- 289 30. Brodsky AR, O'Malley MJ, Bohne WH, Deland JA, Kennedy JG. An analysis of outcome
- 290 measures following the Broström-Gould procedure for chronic lateral ankle instability. Foot Ankle Int

- 291 2005;26(10):816–819.
- 292 31. Yasui Y, Shimozono Y, Kennedy JG. Surgical procedures for chronic lateral ankle instability. J Am
- 293 Acad Orthop Surg 2018;26(7):223–230.

	Patients without	Patients with cartilage	
	cartilage damage	damage	<i>p</i> values
	n=11	n=7	
Gender (male / female)	6 (54.5%) / 5 (45.5%)	3 (42.9%)/4 (57.1%)	
Age (years)	35 (14-44)	26 (18-60)	1.000
Body height (cm)	170 (140-178)	166 (154-180)	0.375
Body weight (kg)	60 (50-83)	71 (53-85)	0.328
BMI(kg/m ²)	25.5 (20.7-28.7)	24.9 (21.3-29.9)	0.860
Preoperative TTA (°)	9 (3-14)	6 (3-8)	0.085
Preoperative TAD (mm)	6.5 (5.0-8.0)	6.5 (4.5-8.5)	0.536
Preoperative JSSF scale (pt)	66 (62-69)	66 (28-69)	0.733
Preoperative Karlsson score (pt)	45(35-67)	45(34-70)	0.961
Postoperative TTA (°)	3 (0-5)	5 (0-6)	0.151
Postoperative TAD (mm)	4.0 (1.0-5.0)	5.0 (2.0-6.0)	0.056
Postoperative JSSF scale (pt)	90 (87-90)	90 (87-90)	0.256
Postoperative Karlsson scale (pt)	85(75-95)	85(50-100)	0.301
Postoperative period to start jogging (month)	2 (1-3)	6 (3-6)	0.006 *
Postoperative period to return to sports (month)	4 (2-6)	6 (4-12) †	0.056

Table 1Patient demographic data and pre- and postoperative measurement

The values show the median and (range).

†: the value including four patients who could return to sports within 1 year after surgery

P values: Mann-Whitney U test

*:
$$p \le 0.05$$

body mass index; BMI, TTA; talar tilt angle, TAD; talar anterior drawer distance

	Postoperative period to	Postoperative period to	
	start jogging	return to sports	
	n=18	n=15 †	
Age (years)	0.089 (0.752)	-0.254 (0.362)	
Body height (cm)	0.394 (0.105)	0.319 (0.246)	
Body weight (kg)	0.462 (0.054)	0.165 (0.557)	
BMI(kg/m ²)	0.324 (0.189)	0.080 (0.777)	
Preoperative TTA (°)	-0.270 (0.278)	-0.230 (0.409)	
Preoperative TAD (mm)	0.283(0.255)	0.406 (0.133)	
Postoperative TTA (°)	0.576 (0.012) *	0.155(0.581)	
Postoperative TAD (mm)	0.633 (0.005) *	0.784 (0.001) *	

Table 2The correlation with postoperative period to start jogging or to return to sports

The values show the Spearman rank correlation coefficient and (*p* values).

†: the analyses were performed in 15 patients who could return to sports within 1 year after surgery.

*: *p* ≤ 0.05

body mass index; BMI, talar tilt angle; TTA, talar anterior drawer distance; TAD