RMERASRIHSEURT MY EMERIAS

Harmamatau University School of Medcine

& HamaMed-Repository

Global Lipschitz stability for a fractional inverse
transport problem by Carleman estimates

&&2: English

H AR

~BH: 2021-08-20
*F—7— K (Ja):
*—7— K (En):

{E & : Kawamoto, Atsushi, Machida, Manabu
X—=)L7 KL R:

riE:
http://hdl.handle.net/10271/00003881

This work is licensed under a Creative Commons
Attribution-NonCommercial 3.0 International
License.



http://creativecommons.org/licenses/by-nc/3.0/

GLOBAL LIPSCHITZ STABILITY FOR A FRACTIONAL
INVERSE TRANSPORT PROBLEM BY CARLEMAN
ESTIMATES

ATSUSHI KAWAMOTO AND MANABU MACHIDA

ABSTRACT. We consider a fractional radiative transport equation, where the
time derivative is of half order in the Caputo sense. By establishing Carleman
estimates, we prove the global Lipschitz stability in determining the coefficients
of the one-dimensional time-fractional radiative transport equation of half-
order.

1. INTRODUCTION

Let us consider the following time fractional radiative transport equation with
the initial condition and Cauchy data in one dimension.

(8,51/2 + 00y + o¢(x, U)) u(z,v,t)

= as(x,v)/ p(x,v, 0" )u(z, v, t)dv', (z,t)€Q, veV, (1)
v
u(z,v,0) = a(z,v), z€Q, veV,
u(z,v,t) = g(x,v,t), (z,v)el_, te(0,T),
where Btl /% is the Caputo fractional derivative [6] of half order given by
1 L oru(-, -, )
81/2'&(', ,t) _ T IR)
t T h vi-r
We note that I'(+) is the gamma function and T (%) = /7. Here we defined
Q={(z,t); z€Q,0<t<T}, Q= (0,0), V={veR; v < |v| <wvi},
with positive constants ¢, vg,v1. We define I'y and I'_ by
I'y ={(z,v) € xV; tv<0atz =0, £v>0at z = {}.

That is, for a function f(z,v), we have

dr.

. f(z,v)dSdv = /v1 f((),v)var/v0 fl,v)dv,
. f(z,v)dSdv = /Uzl f(0,v) dv—|—/__:o f(l,v)dv.
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We assume
oy € CH(; L>=(V)), o, € CHQ; L>(V)),
and
peCHLL®(V V), p>0 inQxVxV.
The phase function p(x,v,v’) is assumed to be known, whereas oy, o5, or both are
unknown.

Remark 1. Anomalous diffusion is said to be subdiffusion when a € (0,1). In the
case of the time-fractional diffusion equation, analysis for « = n/m (m,n € N,
m > n) is possible once we establish the methodology for v = 1/2 [28]. Similarly,
we can in principle use the general o after we develop in the present paper the
analysis for the time-fractional radiative transport equation for o = 1/2.

The time-fractional radiative transport equation is approximated by the time-
fractional diffusion equation in the asymptotic limit [21]. Inverse problems for time-
fractional diffusion equations with the Caputo derivative 0;* have been intensively
studied during the last decade. Uniqueness in determining « and the diffusion
coefficient was proven [8]. A Carleman estimate was established for the time-
fractional diffusion equation with o = 1/2 [28]. Using the Carleman estimate
technique, conditional stability in determining a zeroth-order coefficient for « = 1/2
was proven [31]. Recovering the absorption coeflicient was considered [15]. A
reconstruction scheme for « was given in [13]. Simultaneous reconstruction of the
initial status and boundary value was considered [20]. Recently, unique continuation
was proved for arbitrary « [19].

In this paper, we prove the global Lipschitz stability when determining o (x, v)
and os(x,v) from boundary measurements. The proof is based on Carleman esti-
mates first established in [7]. The methodology was first used in inverse problems
for proving the global uniqueness [5]. See [16] and references therein. Our proof
particularly relies on the method developed to show the global Lipschitz stability
for the inverse source problem of parabolic equations [14]. See a review article [30]
for further details. For the usual radiative transport equation with 9, the Lips-
chitz stability was shown for —T < ¢t < T [17], for the purely absorbing case of
s =0 [11], and for 0 < ¢t < T [22]. The recovery of o; was also considered in [1].
The exact controllability was proved [18] and the case that o; depends on z,v,t
was considered in [24]. See [4] and references therein for the Holder-type stability
analysis using the albedo operator.

The remainder of this paper is organized as follows. In §2, main results are
stated. We give some physical background in §3. In §4, we derive a first-order
equation in time by multiplying 8,51 /2 by the fractional radiative transport equation
in (1). In 85, we establish our key Carleman estimate. In §6, we prove Theorems
2.1, 2.2, and 2.3. Another Carleman estimate necessary in §6 is derived in Appendix

A.
2. MAIN RESULTS
We define
X = H?(0,T; H*°(Q x V)) N L>=(0,T; H*°(Q x V)).
For an arbitrarily fixed constant M > 0, we set

U= {ueX; llullx + |0xull 1 xo.r)L2vy) < M} .



Let to be an arbitrarily fixed time on (0,7"). We take ¢ > 0 such that
O0<tg—0<tg<tg+do<T.
Moreover we set
Q&ZQX(tof(S,t()‘l’(;) fOI'O<§<IIliIl(t0,T*t0).

Let us consider two total attenuations o’,gl)(a:, v) and 0(2) (z,v) with at(l)((), v) =
at(Q) (0,v) for all v € V, and two scattering coefficients ogl)( v) and ol? )( v) with
agl)(O,v) = ol )(0 v) for all v € V. We perform boundary measurements twice
for the pairs of initial and boundary values, (a1, g1) and (aq, g2). Let ug- ) and u§2)

be the corresponding solutions to (1) for a;(z,v) and g;(z,v,t) (j = 1,2). We
introduce a 2 x 2 matrix R(x,v,t) as

We choose (a1, 1) and (ag, g2) so that det R(x,v,t9) # 0 is satisfied for a chosen
time ¢9 € (0,7).

Theorem 2.1 (Simultaneous determination of oy, o). Let ug»i) eUu (i =1,2
= 1.2) 10" lu~oxyy < M (i = 1,2), and Jov i) < M (i = 1,2).

Moreover we Suppose u ) e CH(Qs; L>(V)), 65/2115.2) € CY([to— 6, to+6]; L®°(2 x
V) for j = 1,2. We assume that det R(,-,tg) # 0 in Q x V. Then there exists
C = C(to,0, M) > 0 such that

”Ut(l) - Ut(2)||:;11(Q;L2(V)) + ||U£1) - 022)||§11(Q;L2(V))
u§2)(""tO)H;(sz;LZ(V))
/ e / { () —u®) ‘ ]a2 u@)f n ‘6t6x(u§l) - @”)H dSdudt
t
tos

2
O v, t) — u(z)(O v t))‘ dvdt,

where 0 < § < min(ty, T — to). Here, C(ty,0, M) = 00 as M — oo.

If one of the coefficients is known, we can determine o; or o, from a single
measurement. The following theorems can be proved similar to Theorem 2.1.

Theorem 2.2 (Determination of o;). Let u € U (i =1,2), ||U§i)||Loo(Q><V) <M
(i =1,2). Moreover we suppose u'?) € C1(Qs; L=(V)), a§/2u<2) € C([to — 6, t0 +
S; L2(QxV)), and u® (-, -, tg) # 0 in Q@ x V. Then there exists C = C(tq, 8, M) >



0 such that

1 2
||Ut( )~ Ut( )”%P(Q;L?(V))
2

< C[|u®( - t0) = u® (- t0)|

H2(Q;L2(V))

to+d 2 2 2
—|—C/ / U@t(u(l) — u(z))’ + lﬁf(u(l) - u(Z))‘ + ‘@@(u(l) - u(z))’ ] dSdvdt
to—9 Iy

to+d
we [T
to—0 JV

where 0 < § < min(tg, T —tg). Here, C(tg,0, M) — 0o as M — 0.

2
0,04 (u(l)(O,v,t) - u(2)(07v7t))‘ dvdt,

Theorem 2.3 (Determination of o). Let u'® €U (i =1,2), |‘Ugi)||Loo(QXV) <M
(i = 1,2). Moreover we suppose u(?) € C*(Qs; L=(V)), 83/2u<2> € C([to — 6, t0 +
S, L=®(Q x V), and [, p(-, -, 0" )uP (-, 0", tg) dv' # 0 in Qx V. Then there exists
C = C(tg,0, M) > 0 such that

||CT§~1) - U£2)||§{1(Q;L2(V))

e H“(l)(" to) — u@ (., .,t0>‘
to+9
e / [
t0—5 F+
to+d
e /
to—9 1%

where 0 < § < min(tg, T — to). Here, C(tg,0, M) — 00 as M — oo.

2

H2(Q;L2(V))

+

Dy (™ — u(Q))’Q + ]a,?(u“) - u<2>)‘2

2
9,0, (u) —u(Q))’ ] dSdvdt

0,04 (u(l)(O,v,t) - u(2)(07v,t)) ’2 dvdt,

Remark 2. In Theorem 2.1, we need an a priori assumption det R(+,-,tg) # 0 in
Q x V at the observation time ¢ = ty3. This nonzero condition is satisfied by the
appropriate choice of (aj,g;) for j = 1,2. The controllability result for (1) about
how to choose (aj,g;) for j = 1,2 is not yet known but obtained along the same
lines of the calculation (in particular, Proposition 1.1) by Yuan and Yamamoto [32],
which is concerned with a parabolic equation. See also Remark 1.3 in Machida and
Yamamoto [22] for the radiative transport equation.

3. ANOMALOUS TRANSPORT

3.1. Relation to anomalous diffusion and anomalous transport. Anomalous
diffusion is often studied using fractional diffusion equations [23, 25]. In particu-
lar, anomalous diffusion is observed for tracer particles moving in an aquifer [2].
An analysis of column experiments revealed a power-law behavior of the waiting-
time function of the continuous-time random walk [12], which has motivated the
use of the fractional diffusion equations. However, recent study shows that such
fractional diffusion equations fail to explain the flow of tracer particles in column
experiments especially during short time periods [29]. When considering the fact
that the time-fractional diffusion equation is obtained in the asymptotic limit of
the time-fractional radiative transport equation for long time and large distance
[21], our attention is driven to the study of the latter equation as a more accurate
model of anomalous transport.



It is known that the mass distribution of tracer particles moving in an aquifer
reveals non-Gaussian behavior [2] and the linear Boltzmann transport has been pro-
posed [26, 27]. Theorem 2.1 guarantees the global Lipschitz stability in determining
the absorption and scattering properties of the area of interest when the concentra-
tion of tracer particles is measured with pumping wells surrounding the area. Also
Theorem 2.1 might be related to optical tomography [3], in which optical proper-
ties of absorption and scattering are determined from boundary measurements, if
propagation of light for some reason shows anomalous transport.

3.2. Continuous-time random walk. The fractional diffusion equation is de-
rived from the continuous-time random walk. In the same manner, the fractional
radiative transport equation is derived from the continuous-time random walk with
velocity.

We begin with the usual continuous-time random walk in z € R, ¢ > 0. Let
©(z,t) be the jump probability density function given by ¢(z,t) = A(x)w(t), where
A(z) is the jump length probability density function and w(t) is the waiting time
probability density function. They are calculated as A(x) = fooo oz, t)dt, w(t) =
ffooo o(z,t) dz. Using p(z,t), the probability density function n(z,t) of just having
arrived at position x at time ¢ is written as

n(e,t) = / / T 0y s)ele -yt — s) dyds + a(2)5(0),

where a(z) is the initial value. We note that the cumulative probability ®(¢) of not
having moved during ¢ is given by

B(t) = 1 —/O w(s) ds. @)

Thus the probability density function P(x,t) of being at (x,t) € R x [0,00) is
obtained as P(x,t) = fg n(x,s)®(t — s)ds. Suppose that the Fourier transform of
A(z) behaves like (FA)(k) ~ 1 — 02k? for small k and the Laplace transform of
w(t) behaves like (Lw)(s) ~ 1 — (78)* for small s (0 < o < 1). Then it is known
that P(x,t) asymptotically obeys the following diffusion equation (o = 1) or time-
fractional diffusion equation (0 < a < 1) in the limit of large « and large ¢ (see, for
example, [23]).

2
oop — Z92p = 0.
T

Now, we generalize A taking velocity into account [21]. Absorption is also con-
sidered. We give A(z;v,v’) as

AMx;v,0") = E6(x)p(v,v) + (1 = &) d(x — v79)d(v — V'),

where & € (0,1), & € (0,&), and 79 > 0 are constants. We will give 79 below
depending on w(t),&. The first term on the right-hand side is the probability that
there is no jump but the velocity changes from v’ to v. The function p(v,v’) is
the probability that the target particle changes its velocity from v’ to v when it is
scattered by a scatterer. The second term shows the probability of transport that
the target particle jumps keeping its velocity without being scattered nor absorbed.
Correspondingly we give ¢(x,t;v,v") as ¢(z,t;v,0") = Az;v,v")w(t), with the
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relations A(z;v,v") = [~ @(z,t;v,0') dt, (1 — &) w(t) = [, [T o(z,t;v,0") dedv/,
where we introduced the probability £, = & — &5 > 0 for absorptlon Then we have

t fe%e]
n(z,v,t) = / / / n(y,v',s)p(x —y, t — s;0,0") dydv'ds + a(z,v)d(t).
0 VJ—oco

With this n(z,v,t), the probability density function P(z,v,t) of being at (z,v,t) €
R x V x [0, 00) is given by P(z,v,t) fo x,v,t)®(t— s) ds, where ® is introduced
in (2). In the asymptotic limit of small k,s, we obtaln

(05 + v0, + 0¢) P(w,v,t) = as/ p(v,v")P(x, v t) dv’
v

where oy = &/7%, 05 = & /7%, 70 = 7%/(1 — &). Thus we see that (1) is related
to the continuous-time random walk with velocity. Furthermore it can be shown
that (1) reduces to the diffusion equation with the absorption term in the asymp-
totic limit [21]. In this sense, (1) governs anomalous transport at the mesoscopic
scale, whereas the governing equation is the fractional diffusion equation at the
macroscopic scale.

4. FROM ONE-HALF TO ONE

Since we have no Carleman estimates for time-fractional radiative transport
equations, we begin by obtaining an equation with the time derivative 9; by taking
the t-derivative of half-order in the original equation. The following lemma ensures
the relation 81/ 231/ ? = 9, in the calculation developed in this section.

Lemma 4.1 (Xu-Cheng-Yamamoto [28]). Let @ € C[0,T]NW11(0,T) and
a(0) = 9y2u(0) = 0.
Then for 0 < a1 + ag <1,
oM oM a(t) = of T a(t).
Let us consider differences,
ri(z,v) = crt( )(z,v) - Ut(2) (x,v), ro(z,0) = oV (z,0) — 6@ (z,v),

where 7,(x,v),75(z,v) € C1(Q; L>®(V)) with r,(0,v) = r4(0,v) = 0 for v € V. We
define vectors r,u as

(1) ()
re(x,v u ' (x,0,t) —uy (x, 0,1
)= (1)) e = (D0 ).
s (x,0,t) —uy  (x,0,1t)
Similar to Yamamoto and Zhang [31], we introduce a new vector @i(x,v,t) as
2t1/2
1
T (3)
By differentiating both sides of the above equation with respect to ¢, we obtain d;
as

a(z,v,t) =u(z,v,t) — R(z,v,0)r(z,v).

Opa(z,v,t) = dpu(x,v,t) — R(z,v,0)r(z,v). (3)

1
T (3)t1?
We note that
a(x,v,0) =0.



Using 9,/%t'/2 = 1T(1/2), we obtain
atl/Qﬁ(z, v, t) = 5‘2/2u(x, v,t) — R(z,v,0)r(x,v).
The above equation implies

8,51/211(:5, v,0) =0.

We note that by writing O't(l), Ugl) as oy, 05, we obtain the following time-fractional

radiative transport equation.

(8151/2 + vﬁx + Ut(xa U)) u(vaat) = O'S(LI?,’U>/ p(w7v7v/)u(x’vl7t) d?)/
14

+R(z,v,t)r(x,v), (x,t)€Q, veEV, (4)
u(z,v,0)=0, z€Q, veV,
u(z,v,t) =0, (z,v)el_, te(0,T).

Now we can alternatively compute 0,11 as follows.

aa=0,"9""a

= 83/2 (—vazu —ou+ oy /Vpu dv’ + Rr>

= —v0, <v8xu — oyu+ oy /Vpu dv' + Rr>

— (—val.u —ou+ oy /Vpu dv’ + Rr)

+US/‘/p(—v'8zu(x,v',t) — oy(x, v )u(z, ', t)

+os(z,v) /Vpudv” + R(x,v’,t)r(ac,v’)) dv' + (Btl/QR) r

=v20%u — vRI,r — (v@zR +o.R— 83/23) r

+2v040,u + (v(9p0¢) + 0f) u— (V0 + 0¢) 0 /Vp(x, v, v ) u(z, v, t) dv’

+US/Vp(fv'8$u(x,v',t) — oz, v )u(z, v, t)

+os /Vpu dv'" + R(x,v',t)r(xw’)) dv’. (5)
From (3) and (5), we arrive at the following equation.

da(x,v,t) — v202u — Liu(z,v,t) = / K(z,v,v" )u(z, v t)dv’
v

+f(z7v7t)v (Qj,t) €Q, vey, (6)
u(z,v,0)=0, z€, veV,
u(z,v,t) =0, (z,v)el_, te(0,T).



Here,
Liu(z,v,t) = 2v0y(z,0)0u(z,v,t) + (v0,0¢(2,v) + o7 (z,0)) u(z, v, t),
K(z,v,v") = =09, (os(z,v)p(z,v,v"))
— os(z,v)p(x,v,v )((U+v)8 + or(z,v) + or(z,0"))
+ o(z,v) / os(z,v")p(x,v,0")p(x, 0" v") dv”,
%
and

f(z,v,t) = —vR(z,v,t)0,r(z,v)

— (00, R(z,v,t) + oy (2, v)R(x,v,t) — 0} *R(x, v, t) — R(z,v,0)| r(z,v)

1
ROTTE
Jros(x,v)/Vp(:z:,v,v/)R(:r,v',t)r(x,v/)dv/. (7)

Remark 3. Our argument only works in one dimension. In the multi-dimensional
case (n > 1), the principal coefficients v;v; (4,5 = 1,. .., n) of the parabolic equation
corresponding to (6) do not satisfy the uniform ellipticity for V = {v € R™; vy <
|v] < wv1}, and we can not derive the Carleman estimate, which is obtained below
for the one-dimensional equation.

5. CARLEMAN ESTIMATE

Hereafter in this paper, we let C' denote generic positive constants. Let us look
at one component of the vector equation (6) and consider the following equation.

Lou(x,v,t) — Lyu(z,v,t) —/ K(z,v, v )u(z,v' t)dv' = f(z,v,t),
v

(z,t) €Q, wveV, (8)
u(z,v,0) =0, z€Q, veV,
u(z,v,t) =0, (x,v)el_, te(0,T),
where
Lou(z,v,t) = Ou(z,v,t) — v*%u(z, v, t).
Let d € C%(Q) be a function such that
d(z) >0 for ze€Q, Oyd(z) <0 for xe€Q.

As was done in [9, 10, 14, 30], we use the weight function « as
e/\d(m) — eQAHd\IC(ﬁ)

alz,t) = 0T =1 . (9)
We define
()
plat) = HT — 1)
We set

z(z,0,t) = 2@y, v, t).
We note that o < 0 in 2 x (0,7'), and
z(z,v,0) = z(z,v,T) =0, Orz(x,v,0) = 0z2(x,v,T) =0,
for (z,v) € @ x V.
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Proposition 5.1 (Carleman estimate). There exists \g > 0 such that for arbitrary
A > Ao, we can choose sg = so(A) > 0 and there exists C = C(sg, Ag) > 0 such that
the following estimate holds for all s > sg and all u € U which satisfies (8).

1
/ L‘P |0pu|? + s\ | Opul® + 83)\4<p3|u|2} e?** dxdvdt
QxV

QxXV
T
+CeCNs / / |0,u(0,v,t)|? dtdv. (10)
Vv Jo

Proof. 1t is sufficient to show the Carleman estimate for Lou. Suppose we have

T
<C \f|2e%adxdvdt+0ec‘”s/ / (|ul? + |0pul® + |9pul?) dSdvdt
o Jry

1
/ / [|atu|2 + s\2p|0ul* + 53/\4903|u2} 25 dodidu
vJQ LS¥
T
< C/ / |L0’u,|2€25°‘ dl‘dtdv-i-CeC()\)s/ / (|u|2+|atu|2_|_ |(9wu|2) dSdvdt
vIQ o Jry

T
+Cec<*>3// 0,u(0, v, t)|? dtdv. (11)
vV Jo

Since

2
|Loul®

IN

C|f|? + C|Liu* + C ’/ K(z,v,v )u(x,v' t) dv’
v

2

IN

)

C|f|? + Clo,ul® + Cluf* + C ’/V K(z,v,v" )u(x, v’ t) dv’

we obtain
1
/ / [|8tu|2 + s\2p|0,ul* + 53)\4903|u2} e dxdtdv
vJQ LSP
S/ / C|f|? +C|8Iu|2+C|u|2+C‘/ K(z,v,v" )u(x,v' t) dv’
vJQ %
T
+ceC<A>S/ / (Jul? + |Byul? + |0,ul?) dSdudt
o Jr,

T
—|—Cec()‘)s// |0,u(0, v, t)|? dtdv.
vJo

If we notice

o

50// (/ [u(@, o', )2 + [Opulz, o', )] dv/) e
VJQ Vv

SC\V|/ /(|u(a?,v,t)|2+|3zu(x,v,t)|2)625°‘ dxdtdv, (12)
vJe

2
] €25 dadidv

2
€25 dxdtdv

/ K(z,v,0 Yu(z,v' t)dv’
v
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we have

1
/ / [|(9tu|2 + s\2p|0yul? + 83)\4<p3|u|2} e dadtdv
vJQ LS¥
gc/ / \f|2e2mdxdtdv+0/ / (10zul® + uf?) e*** dadtdv
vJe vJQ

T
cce [ [ (0l + 0w asiua
0 ry

T
+CeCMs / / 105u(0, v, )2 didv.
Vv Jo

Taking sufficiently large s > 0, we can absorb the second term on the right-hand
side of the above inequality and we obtain the Carleman estimate (10). Below we
will derive (11).
Let us define
Pz :=e**Lo(e™Yz) = **Lou.
We split Pz into three parts:

Pz=Pz+ P,z — Ryz,

where
Pz = —020%2 — s°\20%(0,d)*v?2 — 5(0s0)z,
Pyz = 01z + 25Xp(0,d)v?0, 2,
Roz = —s\2p(0,d)*v?*2 — sAp(02d)v?2.

We note that
P12 + Pazl|72gxvy < 21P2l22(0xv) + 21 R0zl Z2(gxv)-
Here,
P12+ Paz)|720x vy = P12l 32(0xv) + 1 P22 ll720xv) *2/62 V(Plz)(Pﬂ) dzdvdt.
X

Therefore we have
1
2|P2z||iz(ng>+/Q V(Plz)(Pﬂ)dmdvdtS 1P21Z2(0xv) + IR0zl 72 x vy (13)
X

Let us calculate the left-hand side of the above inequality term by term. First, using
the inequality |21 + 22|% > %|zl|2 —|22|% (21, 22 € C), we have for any ¢ € (0, 1],

||P22||2L2(Q><v) = //|Pzz\2d:vdtdv
ViJQ

1
5//—\sz\2da?dtdv
vJQ S¥

£ / / L 10,22 dadtdo — 4ev? / / 5N (0,d)2|0, 2|2 dedtdv.
2 vJQ s¢ VJQ

(14)

Y

Y

The second term can be estimated as follows. Let us write

/ (Plz)(sz) dxdvdt:11+12+f3+f4+l5,
QXV
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where

L, = / 282 6tz) dxdvdt,
QxXV

I, = / —02022) (25Ap(0,d)v° 0, 2) dzdudt,
QxV

13 = / 2)\2 2 8 d) )(8152) dmdvdt
QxV

L, = / —82X%p%(0,d)*v2) (25X\p(0,d)v?0, 2) dadvdt,
QxXV

I, = / (—5(0¢)z) (9p2 + 25Ap(0,d)v? 0, 2) dxdvdt.
QxV

We can compute [ through I using integration by parts and the Schwarz inequal-
ity. Note that z(z,v,t) = Oiz(x,v,t) = 0 in T'_ x (0,T) because u(z,v,t) = 0,
(z,v,t) e T_ x (0,T). We have

I = _/OT (/ V2(0,2)(8y2) do

For the second term, there exists C' > 0 such that

—o
+ / v%(0,2)(02) dv
=0 —v1

m:o> dt.  (15)

I, = 7//s)\go(axd)v‘laxwwz\zdzdtdv
VJQ

//SA2¢(8xd)2v4|8mz|2dxdtdv—C’/ / s\p|0p2|? dzdtdv
VJQ VJQ

Y

T
/ / (s)\<p(81d)v4|5‘xz|2|x=€ + s)\cp(axd)v4|8zz|2|x=0) dvdt. (16)
o Jv
We can estimate the third term as
1
I; = —7/ / 2 X202 (0,d)*v? 0y |2|? dadtdv > —C/ / $2N2p3| 22 dadtdv. (17)
2 Jy Q VJQ

The fourth term is estimated as

I, = —//33A3<p3(8zd)3v481|z|2dazdtdv

// 3\ 3 (0,d) v |2|? dedtdv — C // $3\3p3| 2|2 dadtdv

+/ ©>(0,d)>v*| 2| dv
z={

- / s\ (/ 3(8,d)3v*|2|* dv
0 Vo = —v1

Y

) dt.
=0

(s
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The last term I5 is computed as

1
15:_,/ / 5(6ta)8t\z|2dxdtdv—/ / 2 Ap(0,d)(0r)v?0y |2|* dadtdv
VJQ

// 50% + 5203)|2|* dedtdv

_/0 $2A (/UO ©(0,d)(0ya)v?|z|? dv » + /:0 0(8,d) (Dpa)v?|2]? du

By putting (15) through (19) together, we obtain

) i,
z=0

D)

//s)\2g0(8md)2v4|5‘mz|2dwdtdv+3/ / 3\ 03(0,d) v |2|* dedtdy
VJQ
</ (P12)(Pyz) dxdvdt—l—C/ / sAp| 0, 2|* dxdtdv

QXV

// (s3X30% + s2X\20%) |2|? dadtdv + C(N) // 5% + 520)|2|? dadtdv

(20)

B=/0T</v8zatz)d Z)dt

+ / (sAp(9,d)v*0, 2| | + SAcp((?xd)v4|5‘xz|2|I:0) dvdt
o Jv

—vo
+ / v%(0,2)(0s2) dv
r={

—v1

!

T
+ ( $3\303(9,d)%v?|2|? dv

—vo
+ / $3\3p3 (0, d)3 v |2|* dv
z={ —v1

+ /0 2)\</v0 P(0ud) @r0)e? < o]

.
+ / o(Dad)(Br0)v?) 22 dv
z=/{ —U1

) dt
=0

) dt.
=0

||R02||%2(va) < C’/ /(52)\4g02 + 82 2\20?)|2|? dadtdv. (21)
VJQ

The remainder term ||ROZ||2L2(Q><V) is estimated as follows.

Let us apply the estimates (14), (20), (21) in (13). For sufficiently small €, we have

1
/ / {w|8tz|2 + s\2p|0, 2| + 33)\4<p3z|2} dxdtdv
VJQ

SC/ / |Pz|2d:cdtdv+6’/ / s\p|0y 2|2 dzdtdv
vJQ vJQ

+C/ / (82 A? 4 83\3p% + 52 2\20% + 52 N2 0?) |2|* dadtdv

+C(A // s20% 4 5¢°)|2|? dadtdv + CB. (22)
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The boundary term is estimated as

T
B < cecms/ / (122 + |82 + 0,2]2) dSdudt
o Jrg

T
L e / / 10,2(0, v, 1) [2dvdt. (23)
0 1%

Therefore for sufficiently large s, A\, we obtain
1 .
/ / [|3tu|2 + s\2p|0,ul* + 53)\4303|u2} e dxdtdv
vJQ LSP

< C/ / | Lou|?e*** dxdtdv + C/ / sAp|0yul?e®*® dadtdv
VJQ VIR

—|—C'/ /(52)\4902 + 83\3p%) |u|?e?** dxdtdv + C’(/\)/ / 5203 ul?e*** dxdtdv
VJQ VJQ

T
+Cecms/ / ([uf® + 10ul® + |0,ul?) dSduvdt
0 s

T
INGRCIO / / 105u(0, v, £) 2w, (24)
0 1%

The second, third and fourth terms on the right-hand side of (24) can be absorbed
in the left-hand side, and (11) is derived. Thus the proof is complete. O

Remark 4. The proof is similar to the calculation in [9, 10, 30] in the sense that the
same weight function is used. However, our equation contains the integral term,
and furthermore the surface integral appears in the Carleman estimate due to the
half-range boundary condition in (8).

6. PROOFS OF THEOREMS 2.1, 2.2, AND 2.3

6.1. Proof of Theorem 2.1. Here we prove Theorem 2.1 by making use of Propo-
sition 5.1.
Let us recall that u satisfies (6). We set

y(z,v,t) = Opu(z,v,t).
We obtain

Oy = 0202y + Liy + / K(z,0,0)y(@, o/ t) v’ + (e, 0,1),  (25)
\%4

where each component of y satisfies y;(z,v,t) =0 onI'_ x (0,T) (j = 1,2). For
0 <ty <T, we have

fi(z,v,t0) = yj(gc,11,to)—v28§uj(x,U,to)—Lluj(amv,to)—/ K(z,v,0")uj(z, v to) dv',
v
(26)
for j =1,2.
We consider the Carleman estimate for (25) on Q5. We here use the following
weight function for the Carleman estimate instead of a(z,t) in (9).

erd(@) _ 2 dllocm)

(t—to+0)(to+0—1t)

as(z,t) =
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We define
e)\d(r)

(t—to+0)(to+d—1)

os(xz,t) =

We can readily see that Proposition 5.1 holds true for ¢ € (t9 — d,to + J) instead of
€ (0,T). For a sufficiently large fixed A > 0, we can write the Carleman estimate
in Proposition 5.1 as

/ / [|atyj| +$<P6|3mya|2+33%yj|2] 25 dudtdv
Qs

to+9d

SC/ / Ok f; |2e2s0s dzdtdv + Ce®* / (|yj‘2+|8tyj‘2+|8;zyj|2) dSdvdt
Qs r,

to—0

to+9
CS/ / 0.y (0,v,t)|* dtdv, (27)
t

for j =1,2.
To estimate [, |0¢u;(z,v,t0)|2e?5@(@t0) dzdy from above, we note that

lim @) =0  for z €.

t—to—0+0

Hence we have

/ ly; (@, v, to)[* €25 150) dado
QxV

to
/ O (/ ly; (2, v, t) P2 (=0) dxdv) dt
to—0 QxV

to
/ / (2|yj||8tyj| + 23(8ta5)\yj|2) e25s (@) qtdrdu.
QxV t0—5

We can further estimate the above inequality by noting that |Opas| < C’gp?; and
using

1 1 1
0051 = (< =loms ) (st < sl
1y;110ey;| (S\/%I t%l) sv/esly;l) < Ityyl + 55%¢slyl®
and applying (27). We obtain

/ ly; (z,v, to)\2 2525 (2:t0) oy
QxV

<], (=

< —/ / |8, f 22526 @) dadtdy 4+ CeC*
8 Jv JQs

to+0
Cecs/v/t 5 10,y (0,v,t)|* dtdv.
o

12+ 82(,05|yj2> 2525 @) dydtdy

to+96
/r (lyi * + 10y, > + |00y, ) dSdvdt
N

to—9
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That is,

/ |8tuj(x,v,t0)\2ezso‘é(z’t")dmdv < g/ / |0, f; 12?525 (@) dgdtdv
QxVv § Qs

to+6
+ CS/ / (10vu;]? + |07u;]? + |02 0pu;|?) dSdudt
to

t0+5
+ C// 10,05 (0,v,t)|* dtdv,
to

for j = 1,2. By taking the weighted L? norm of (26) using the above inequality,
we obtain

/ [ (@, v, t)[* €252 1) dardu

QxV

< / |8y (, v, to)|? €250 (@10 dady + Ce |uy (-, -, to)||iz(Q;Lz(V))
QxV

< 7/ |(9 f |2 2sas(z,t) daedvdt + CeC* Huj(a ’ )HH2(Q L)
t0+6
CS/ / (|0vu;]? + |07u;]? + |0:0pu;|?) dSdudt

to+0
X / / 10,00, (0, 0, )2 dtdv, (28)
to

where the integral term on the right-hand side of (26) was estimated by a calculation
similar to (12). By differentiating (7), we obtain

of(z,v,t) = =00 R(z,v,t)0,r(x,v)

- lv@tﬁxR(a:, v,t) + o¢(z,v) 0 R(z, v, t) — 8t6t1/2R(x, v, t) +

—|—Us(x,v)/ p(x, v, ") R(z, v, t)r(x,v") dv'.
1%

Thus we have

// |0, f;]2%5%5 (@) dgdtdv
VJQs

= C/ / (Ire]? + 10ere]? + 152 + 9075 ]?) €295 @) dadtdv
V JQs

< C/ (Ire]® + 10are|” + 7s|* + 1007 ]%) 2523 (@t0) d . (29)
QxV
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Here, since as(x,t) < as(x,to) was used, C' depends on ty and 6. By (28) and (29),
we obtain

/ (v, 0)* €205 dady
QxV

c
< ;/ (‘aﬂ‘t|2 + |re|? + [0ars)* + |Ts|2) e2526(:0) oy 4+ Ce€s Il (-, '7t0)||i12(Q;L2(v))
QxV
to+d
+0e03/ / (18w, + 1020, + 950, ) dSdvdt
t()—(s F+

to+9
Hk“[;/6|mawmmﬁﬁﬁm, (30)
to—

where j =1, 2.
Let us estimate [, |f;(z,v, to)|?e?5@s(®:t0) dedy from below in terms of 7, and
rs. For this purpose we use the following proposition.

Proposition 6.1. Suppose w(z,v) satisfies
O w(x,v) + A(z,v)w(z,v) —|—/ D(x,v, v )w(x,v")dv' = F(x,v),
v

where A € L®(Q x V)2*2 and D € L>®(Q x V x V)2*2. Then for sufficiently large
s > 0, there exists a constant C' > 0 such that

/ [|3xw(:c, 0)]? + s% |w(a, v)|2] 255 (@) dudy < C |F(z,v)|” e (®:10) dady,
QxVv QxV

for all w € HY(Q; L2(V))? and w(0,v) =0, v € V.
Proof. Let us express A, D, w, and F as
Ay Agp Dy1 Do w1 F
A= . D= 7 - , F= .
( Ag1 Az Dy Do W wa F
We have

Opwy(z,v) + A11(z, v)w (z,0) —I—/ Dyy(z, v, 0wy (z,0") dv’ = Fy(z,v),
v

Orwa(x,v) + Aga(x,v)we(z,v) —|—/ Das(z,v, v )wa(z,v") dv' = Fy(x,v),
1%

where

Fi(x,v) = Fi(z,v) — Aa(z, v)ws(z,v) — / Dio(z,v,v" )wa(x,v") dv’,
v

Fy(x,v) = Fy(z,v) — Aoy (z,v)wy (z,0) — / Doy (z, v, )wy(x,v") dv’.
1%
If we use Lemma A.1 in Appendix, we obtain

/ (|8a:w1 (.’E, 'U)|2 + s2|w1(x, 'U)|2 + |azw2(m7 ’U)|2 + S2|w2(1', v)‘2) erag(a;,to) dadv
QxV

. 2 . 2
<C <‘F1(x,v)‘ + ’Fz(x,v)’ > e2s2s(@:t0) ey
QxV

< c/ (1F @, 0) + B, 0)*) dodv+C [ (juwi(,0)[2 + wa(a, v)|?) dedo.
QxVv QxVv
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The proof is complete by noticing that terms [i, |w;(z,v)[*dv (j = 1,2) can be
absorbed to the left-hand side if s is sufficiently large. ([

Recall that we assumed det R(z,v,t9) # 0 and |[v] > vo > 0. We apply the above
Proposition after rewriting (7) as

1

Our(2,v) + vR(z,v,10)

X (v@xR(a:,v,to) + ot(z,v)R(z,v,t0) — 82/2R(x,v,to) -

+ Mp(m,v,v')ﬁf(m,v’,to) r(z,v") dv’
/v (vR(m,v,to)

-1
=—°f to).
vR(z,v,t0) (2,v,%0)

By 1/R we denote the inverse matrix of R, that is, 1/R = R~!. We obtain

/ (102> + 82[1e]® + |0rs|® + 8%|rs|?) 2525 (@:t0) oy
QxV

2
< CZ/ £ (z, 0, t0) 22525 (@t0) dgdy. (31)
i1 JOQxV

Thus we have

(1 - C) / (100re® + e + 9075 |* + [rs]?) €505 10) dudy
QxV

S

CQZ”“J 10l asne(vy)
to+d
Céz/ / (19ru;? + 182,12 + |90y, ) dSdud

to+9d
CSZ/ /t 10201 (0,v,t)|? dtdv.

If we take sufficiently large s > 0, we obtain the stability estimate in Theorem 2.1.
O

6.2. Proof of Theorem 2.2. Instead of the vector-valued r(z,v),u(x,v,t), we
introduce

r(z,0) =ri(z,v),  ulz,o,t) =uD(z,0,8) - (@,0,0).
Correspondingly, we have R(z,v,t) = —u§2)(x, v,t). We can carry out almost the
identical calculation in §4 and §6.1 with these r(z,v),u(x,v,t). As a result, we

similarly obtain the stability estimate in Theorem 2.2.
O
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6.3. Proof of Theorem 2.3. Instead of the vector-valued r(z,v),u(x,v,t), we
introduce

r(z,v) = rg(x,v), u(z,v,t) = uV (z,0,t) — u®(z,0,1).

In this case, we have R(x,v,t) = fV p(m,v,v’)u?)(m,v’,t) dv’. We can carry out
almost the same calculation in §4 and §6.1 with these r(z,v), u(z,v,t). As a result,
we similarly obtain the stability estimate in Theorem 2.3.

[l
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APPENDIX A

Let us consider

Opw(z,v) + bz, v)w(z,v) + /V c(z,v,v")w(x,v'") dv’ = F(z,v), (32)

where b € L®(Q x V) and c € L®(Q x V x V).

Lemma A.1. For sufficiently large s > 0, there exists a constant C > 0 such that

/ {|81w(m, v)|? + s |w(m,v)|2} e2sas(@to) dudy < C |F(x,v)]? €252 @:10) dpdy,
QxV QxV

for all w € H*(Q; L*(V)) satisfying (52) and w(0,v) =0, v € V.

Proof. Hereafter we let C' denote generic constants which do not depend on s but

may depend on . B
Let us set @ = we*®* (+*) and define P by

P = esas(wto)aw (@e—saa(wto)) )
Then we have
P = 0, — sAps(-, t0) (0pd) .

Taking L2-norm for P&, we obtain

~ 2
|7

L2axv) 1020|720y + 15205 (- t0) (D d) B 7201

= / (0:) (M5 (-, 10) (8:4) ) devd
QxV

>C (|0, @) + s*|w|?) dwdv — / sAps (-, t0)(02d) 0, |@|? dwdv
QxV QxV
>C (|0,@0)* + s*|w]?) dwdv — C s|w|? dxdv,

QxV QxV



19

where we could drop the boundary term which arose from integration by parts
because 0,d < 0 in  and w(0,-) = 0 in V. Hence we have

—l—/ s|lw|* dzdv. (33)
QxV

Taking sufficiently large s > 0, we may absorb the second term on the right-hand
side of (33) and we have

~ 2
/ (1907 + /1) dedv < C |||
QxVv L2(QxV)

~ 2
/ (1907 + () dedv < C ||| .
QxV L2(QxV)

From the above equation for w, we arrive at the following inequality for w.

/ {|8ww(m,v)|2 + 52 |w(33,v)|2} e2sas(@to) dudy < C |0 w|* €252 (@:10) dpdy,
QxVv QxV
(34)
Since
2
|0, w|* < C|F|> 4+ Clw]* + C ‘/ c(z, v, 0" Yw(x,v") dv'|
v
we obtain
/ “(’%w(%vﬂz + s |w(a:,v)|2} e?ss(@t0) dady
QxV
<C |F|? 250 (®10) dgdy + C wl? €255 (#:40) dpdy
QxV QxV
2
+C/ / (@, v, 0" ) w(z,v') dv'| e @) dudy
QxV [JV
<C |F|? 250 (®10) dady + C w|? €255 (@) ddy, (35)

QxV QxV

where we noted that ¢ € L*°(2 x V' x V) and used the fact that, by the Schwarz
inequality,

/ / c(z, v, v )w(z,v") dv'
QxVv |JV

Taking sufficiently large s > 0, we can absorb the second term on the right-hand
side of (35) to the left-hand side. Thus we obtain the estimate in Lemma A.1. O

2

628045(3?7%) drdv < C |w|2 eZsoca(x,to) dxdv.
QxV
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