

Acoustic histology with specific dyes and antibodies

メタデータ	言語: English
	出版者:
	公開日: 2022-01-26
	キーワード (Ja):
	キーワード (En):
	作成者: Miura, Katsutoshi, Yamashita, Kanna
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/00003940
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Acoustic histology with specific dyes and antibodies

Katsutoshi Miura* and Kanna Yamashita

Department of Health Science, Pathology and Anatomy, Hamamatsu University

School of Medicine, Hamamatsu, Japan

*Corresponding author

Katsutoshi Miura

1-20-1 Handa-yama, Higashiku, Hamamatsu 431-3192, Japan

Tel: 81-53-435-2811

Fax: 81-53-435-2800

E-mail: kmiura@hama-med.ac.jp

1 Abstract

2	The present study aims to identify specific staining methods for acoustic histology.
3	We compared attenuation-of-sound (AOS) images from scanning acoustic microscopy
4	(SAM) with light microscopy (LM) images. Ethanol-fixed tissue or cytology samples
5	and formalin-fixed surgical or autopsy specimens were examined. Nuclei, collagen,
6	elastic fibers, and polysaccharides and various antigens, including cell surface,
7	cytoplasmic, nuclear, and stromal substances, were observed. Samples with different
8	fixation methods were used. Hematoxylin staining had significantly higher AOS
9	values in accordance with staining duration. Specific staining for collagen, elastic
10	fibers, and polysaccharides increased the AOS values of the specific substance
11	Using diaminobenzidine tetrahydrochloride in NiCl ₂ solution as a substrate for
12	horseradish peroxidase increased the AOS values to those suitable for acoustic
13	immunostaining. Collagenase digestion following collagen staining decreased AOS
14	values, reflecting collagen density and distribution. Staining with specific dyes or
15	acoustic immunostaining enabled the histological localization of specific substances
16	by SAM, similar to LM.
17	Keywords: Scanning acoustic microscopy, histology, cytology, attenuation-of-sound,
18	hematoxylin, special staining, immunostaining, collagenase

20	Introduction
21	To date, microscopic structures have been precisely examined using light
22	microscopy (LM). Visual images of cellular and tissue components can be
23	discriminated by staining or immunostaining using specific dyes and antibodies by
24	LM. For acoustic images, unstained images of various tissues and cells are visualized
25	using scanning acoustic microscopy (SAM) (Kolosov et al. 1987; Miura 2016).
26	Whether it is possible to differentiate various tissue structures and cellular
27	components using specific dyes and antibodies, and to assess if there are advantages
28	in using acoustic imaging over LM remain to be elucidated.
29	The principles of SAM are shown in Fig. 1 (Saijo et al. 1991; Saijo 2009). Because the
30	acoustic properties among tissues and cellular components differ, tissue and cellular
31	imaging is possible (Brand et al. 2008; Foster et al. 2000). Saijo et al. have reported
32	tissue characterization of gastric cancer tissues (Saijo et al. 1991) and infarcted
33	myocardium (Saijo et al. 1997) by plotting values of attenuation coefficient (dB/mm
34	MHz). They made hematoxylin and eosin or elastica-Masson staining slides of the
35	neighboring sections to identify the materials within the SAM images. If a particular
36	stain for LM imaging can also alter the acoustic properties, identification of materials

37	would be possible by using one SAM slide only, compared to before and after staining.
38	Moreover, staining procedures using special dyes with specific binding capacity may be
39	easier in SAM imaging.
40	In terms of the physics of ultrasound, attenuation is usually measured in units of
41	decibels per unit length of medium (dB/mm) and is represented by the attenuation
42	coefficient or attenuation constant of the medium (Szabo and Wu 2002). The
43	attenuation coefficient (a) (dB/mm \cdot MHz) can be used to determine the total
44	attenuation in the medium using the following formula: Attenuation = α (dB/mm MHz)
45	l(mm) f(MHz), where "l" is length and "f" is frequency. A high frequency beam is
46	attenuated more than a lower frequency beam. Various processes influence
47	attenuation, including reflection, refraction, scattering, and absorption. The
48	attenuation coefficients of common biological materials at a frequency of 1 MHz are as
49	follows (Culjat et al. 2010): water = 0.022, blood = 2.0, fat = 4.8, liver = 5.0, muscle =
50	10.9, connective tissue = 15.7, tendon = 47, and cortical bone = 69 (dB/mm MHz).
51	In general, the attenuation coefficient is low in fluid-filled structures and high in
52	dense solid tissues. Specific dyes or materials combine particular components of cells
53	or tissues, which produce contrast images under LM. If specific dyes and antibodies
54	alter the local acoustic values, it is possible to detect the location of a specific

55	structure and function simultaneously using SAM. Here we present the successful
56	results of staining for nuclear and extracellular components. In addition, by
57	performing collagenase treatment post-staining, we investigate the specificity of
58	collagen distribution.
59	
60	Materials and Methods
61	Subjects and ethics
62	All human tissue sections were prepared from samples stored in tissue archives at the
63	Hamamatsu University Hospital, Japan, or Shizuoka City Hospital, Japan. The
64	research protocol for using stored samples without revealing patient identity was
65	approved by the Ethics Committee of Hamamatsu University School of Medicine (No.
66	14-135). Written consent was waived for inclusion in this retrospective study. All
67	methods were conducted according to approved guidelines and regulations. The
68	cytology and tissue samples were prepared by the same methods reported previously
69	(Miura and Yamamoto 2015) (Miura et al. 2015) as shown in Fig. 2.
70	
71	SAM observations

The SAM (AMS-50AI) system used in this study was supplied by Honda Electronics 72

73	(Toyohashi, Aichi, Japan) and was equipped with a 320-MHz transducer. This
74	resolution of the system was ${\sim}4.7~\mu\text{m}.$ The transducer was scanned on the slide to
75	produce a two-dimensional image by plotting the AOS value of each region on the
76	screen as shown by Saijo et al (Saijo et al. 1991; Saijo et al. 1997). Ultrasound with
77	a pulse wave runs from a transducer and reflects off the surface of the tissue and
78	glass slide to return to the transducer. Distilled water is used as a coupling medium.
79	The two wave forms are separated by comparing the reference wave from the glass
80	slide without a tissue specimen. We calculated the time and amplitude difference of
81	the transmission through the tissue in order to obtain the values of attenuation-of-
82	sound (AOS) through the tissue. Tissue thickness was determined using frequency
83	characteristics of the amplitude and phase shift of reflected waves from a tissue
84	(Okawai et al. 1990). The AOS from each point were collected and plotted on a
85	screen.
86	
87	Specific staining
88	Hematoxylin staining for nuclei
89	The cytology slides and dewaxed histology slides were soaked in commercial

90 hematoxylin solution (Wako Pure Chemical, Osaka, Japan) for 10 min, washed

91	briefly in distilled water to remove excess dye and observed by SAM. The same slides
92	were then soaked again in hematoxylin solution for 20 min or 50 min and observed in
93	the same manner by SAM. To produce routine LM slides, eosin staining (Wako Pure
94	Chemical, Osaka, Japan) was added after hematoxylin staining.
95	Feulgen reaction for DNA staining
96	Dewaxed slides were washed in distilled water and observed by SAM. Then, the slides
97	were soaked in 1N HCl at 60 $^\circ\mathrm{C}$ for 10 min and cooled in 1N HCl at 4 $^\circ\mathrm{C}.$ The slides
98	were incubated in Schiff reagent (Wako Pure Chemical, Osaka, Japan) for 30 to 60 min.
99	Then, the Schiff reaction was stopped in 0.54% NaHSO ₃ in $0.45N$ HCl solution and
100	washed in running water. The slides were observed by SAM to compared before
101	staining.
102	Aniline blue staining for collagen
103	The deparaffinized sections were hydrated in distilled water and soaked in 5%
104	phosphotung stic acid solution for 10 min. The sections were then incubated in 0.4%
105	aniline blue in 8% acetic acid solution for 10 min and rinsed twice in 1% acetic acid
106	solution. Sections were then stored in distilled water until observation.
107	Sirius red staining for collagen
108	The dewaxed and hydrated sections were stained in picro-sirius red solution (Cosmo

109 Bio, Tokyo, Japan) for 1 h and washed twice in 0.5% acetic acid solution. Sections

- 110 were then stored in distilled water until observation.
- 111 Weigert's resorcin-fuchsin stain for elastic fibers
- 112 The dewaxed and hydrated sections were incubated in commercial Weigert's resorcin-
- 113 fuchsin solution (Merck, Darmstadt, Germany) for 1 h, washed in 100% ethanol to
- 114 remove excess dye, and stored in distilled water until observation.
- 115 Oil red O, Sudan III, Sudan black B, and Nile blue for lipid staining of fresh-frozen
- 116 tissues
- 117 We have used several dyes suitable for SAM of lipid staining of fresh-frozen tissues.
- 118 The frozen sections were briefly washed in distilled water and soaked in 60% 2-
- 119 propanol for 1 min. Slides were then incubated in Oil red O solution (Cosmo Bio,
- 120 Tokyo, Japan) at 37°C for 15 min. Overstained dyes were removed using 60% 2-
- 121 propanol for 2 min and washed in running water. The slides were soaked in distilled
- 122 water and observed by SAM.
- 123 For Sudan III and Sudan black B staining, the frozen sections were briefly washed
- 124 in distilled water, then soaked in 50% ethanol for 30 sec. Next, the slides were
- 125 incubated in either Sudan III (Merck, Osaka, Japan) at 37°C for 60 min, or Sudan
- 126 black B (Merck, Osaka, Japan) at 37°C for 30 min. Overstained dyes were removed

197	
141	

by soaking in 50% ethanol for 3 min and then rinsed in running water. Slides were then soaked in distilled water and observed using SAM.

- 129 For Nile blue staining, frozen sections were briefly rinsed in distilled water and
- 130 soaked in Nile blue solution (Merck, Osaka, Japan) at 60°C for 20 min. Slides were
- 131 then rinsed in distilled water for 10 sec. Overstained dyes were removed in 1% acetic
- 132 acid solution for 15 min. Finally, slides were soaked in distilled water and observed

133 using SAM.

134 Periodic acid-Schiff reaction

135 Fresh-frozen and deparaffinized sections were soaked in distilled water and oxidized

- 136 in 1% periodic acid solution for 10 min. Sections were then rinsed in distilled water
- 137 for 7 min and mounted with Schiff reagent (Wako Pure Chemical, Osaka, Japan) for

138 10 min. Finally, sections were rinsed in distilled water and observed using SAM.

139 Collagenase digestion

140 Following SAM observation, the stained slides were soaked in distilled water, and

- 141 submerged into a solution of phosphate-buffered saline containing 0.5 mM CaCl_2 (pH
- 142 7.4) plus 250 U/mL type-III collagenase (Worthington, Lakewood, NJ, USA) at 37°C
- 143 for 1 h (Miura and Katoh 2016). According to the manufacturer's instructions, type-
- 144 III collagenase has typical collagenase activity but lower proteolytic activity than

145 other collagenases.

146

147	Immunohistochemistry
148	Immunostaining was performed using a commercially available Chemmate envision
149	kit (Dako, Glostrup, Denmark). The primary antibodies used to detect smooth muscle
150	actin (SMA), CD20, epithelial antigen (EA) and Ki-67, respectively, were as follows:
151	Anti-SMA (ab5694, Abcam, Tokyo, Japan; 1:400); anti-CD20 (L26, Dako, Tokyo,
152	Japan; 1:300); anti-EA (Ber-EP4, Dako, Tokyo, Japan; 1:100), (4) anti-Ki-67 (Mib-1,
153	Dako, Tokyo, Japan; 1:50). Heat-mediated antigen retrieval (95°C, 20 min) was
154	performed with buffer balanced to pH 6.0 (anti-SMA, anti-CD20, anti-Ki-67) prior to
155	staining. Proteinase K treatment was performed for 5 min at room temperature for
156	anti-EA antigen prior to staining.
157	
158	LM observation
159	To compare SAM with LM images, original baseline slides were stained with HE or

- 160 Elastica-Masson trichrome and with Papanicolaou stain for cytology. The same
- 161 sections were then used for LM observation, or immunostaining was observed using

162 SAM.

163	For immunostaining, the SAM image was compared with the LM image. The
164	magnification of each LM image was adjusted to match the corresponding SAM
165	image.
166	Statistical analyses
167	The average AOS values of the nuclei of hematoxylin staining were calculated from
168	at least 10 random points per case using commercial statistics software (Statcel3-
169	Addin forms on Excel, OMS publishing, Tokorozawa, Saitama, Japan).
170	Average AOS (\pm SD) values of baseline, 10 min post-hematoxylin stain, and 30 min
171	or 60 min post-hematoxylin stain were compared using a Student's (unpaired) <i>t</i> -test.
172	Prior to conducting statistical analyses, we confirmed that each dataset followed a
173	normal distribution using a test for the difference between averages. P<0.05 was
174	considered a statistically significant difference for all tests.
175	
176	Results
177	Hematoxylin staining for nuclei exhibited significantly increased nuclear AOS values
178	as incubation time increased (Table 1). All of the FFPE sections (Fig. 3a), cytology
179	(Fig. 3b) and fresh-frozen (Fig. 3c) sections exhibited significantly different AOS
180	values of the nuclei between baseline (before staining) and 10 min incubation, and 10

181 min incubation and 30 or 60 min incubation.

182	The Feulgen reaction for DNA staining led to no apparent alteration regarding
183	SAM imaging.
184	Aniline blue staining for collagen exhibited increased AOS values at Glisson
185	capsules and septal fibrosis, accompanied by nonspecific hepatocyte staining (Fig.
186	4a). However, this nonspecific staining decreased following collagenase treatment
187	and only dense portions of collagen accumulation retained high AOS values.
188	Sirius red staining for collagen exhibited positive high AOS values in the dermal
189	collagen and the epidermis (Fig. 4b). Following collagenase treatment, the ulcer edge
190	at the left side of the figure and the surface of the epidermis retained high AOS
191	values, where dense collagen fibers and thick keratin materials escaped with
192	complete digestion. In the corresponding LM images, no remarkable staining was
193	observed.
194	Resorcin staining for elastic fibers exhibited elevated AOS values in the aortic
195	media, the values of which decreased following collagenase digestion (Fig. 4c). The
196	corresponding LM images showed no remarkable changes before versus after
197	collagenase treatment.
198	Oil red O, Nile blue, Sudan III, and Sudan black B for lipid staining of fresh-frozen

199 tissues revealed no remarkable changes on SAM imaging.

200	Following periodic acid-Schiff (PAS) staining, the AOS values of the tubular and
201	vascular basement membrane increased, which corresponded with the LM image
202	(Fig. 4d).
203	In the immunostaining of anti-SMA, the muscularis mucosae and peritubular
204	smooth muscles exhibited increased AOS values, which corresponded with the LM
205	image (Fig. 5a).
206	Anti-CD20 staining for B lymphocytes exhibited band-like infiltrate of lymphocytes
207	in the esophagus (Fig. 5b). Individual B lymphocytes also exhibited increased AOS
208	values.
209	Anti-EA stained adenocarcinoma cells in the pleural fluid of the cytology slide (Fig.
210	5c). EA antigens localized to the surface of cancer cells with high AOS values.
211	Anti-Ki67 staining showed nuclei of adenocarcinoma cells as high spotted areas,
212	corresponding to speckled positive staining in the LM image (Fig. 5d).
213	
214	Discussion
215	The advantage of using staining in SAM measurement is being able to identify the
216	materials in acoustic images using the same unstained slides. It is possible to guess the

217	materials using nearby slides as a reference, by optical microscopy. However,
218	conventional staining requires many steps and a mounting procedure prior to
219	observation. In our current study, we omit several unnecessary steps and were able to
220	observe slides without any mounting procedure. It is also easier and less time-
221	consuming to identify the materials using the same unstained slide.
222	Hematoxylin dye combined with nuclei, and statistically increased AOS values of
223	fresh tissues and FFPE tissues following staining were observed.
224	Dyes for collagen staining such as aniline blue and Sirius red raised AOS values.
225	After collagenase digestion, these values decreased, which verified the specificity of
226	the staining.
227	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these
227 228	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS
227 228 229	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS values due to the fact that collagenase digested not only collagen but also other
227 228 229 230	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS values due to the fact that collagenase digested not only collagen but also other proteins like elastic fibers or coexisting smooth muscle fibers.
227 228 229 230 231	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS values due to the fact that collagenase digested not only collagen but also other proteins like elastic fibers or coexisting smooth muscle fibers. The PAS reaction for polysaccharides revealed higher AOS values following
227 228 229 230 231 232	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS values due to the fact that collagenase digested not only collagen but also other proteins like elastic fibers or coexisting smooth muscle fibers. The PAS reaction for polysaccharides revealed higher AOS values following staining. These regions corresponded to LM-positive regions.
 227 228 229 230 231 232 233 	Resorcin dye increased the AOS values of the elastic fibers in the aorta, and these increased values declined following collagenase treatment. We observed reduced AOS values due to the fact that collagenase digested not only collagen but also other proteins like elastic fibers or coexisting smooth muscle fibers. The PAS reaction for polysaccharides revealed higher AOS values following staining. These regions corresponded to LM-positive regions. We have used other dyes to apply SAM to lipid and nuclear staining. Oil red O,

235	revealed no remarkable changes on SAM imaging. The Feulgen reaction for DNA
236	staining also led to no apparent alterations in SAM imaging.
237	Specific dyes available for acoustic observations have common features that
238	increase local density. First, metal components are included. Hematoxylin is oxidized
239	to form hematin, which binds with alum mordant-containing Al ³⁺ ions. Positively-
240	charged Al ions combine with the negatively charged phosphate groups on DNA.
241	Another example is the immunostaining substrate Ni-DAB, which contains nickel
242	metal.
243	Second, the dyes available for acoustic staining have a high molecular weight
244	(MW) including aniline blue, molecular formula (MF): C ₃₂ H ₂₅ N ₃ O ₉ S ₃ Na ₂ with a MW
245	of 732.73, Sirius red, MF: $C_{29}H_{18}N_6Na_2O_2S_2$ with a MW of 675.6, and resorcin-fuchsin
246	containing basic fuchsin, MF: $C_{20}H_{20}ClN_3$ with a MW of 337.85. Pararosanilin used
247	in the PAS reaction has a similar formula as basic fuchs n $\mathrm{C}_{19}\mathrm{H}_{18}\mathrm{ClN}_3$ with a MW of
248	323.83. The above dyes combine fibrillar components consisting of repeated chemical
249	formulas.
250	In contrast, dyes found to be unsuitable for acoustic staining have a lower MW. Oil
251	Red O, MF: $C_{26}H_{24}N_4$ with a MW of 403.49, Nile blue, MF: $C_{20}H_{20}ClN_3O$ with a MW

of 253.85, Sudan III, MF: $C_{22}H_{16}N_4O$ with a MW of 352.39, and Sudan black B, MF:

253	$C_{29}H_{24}N_6$ with a MW of 456.54. In addition, target lipids do no exhibit repeated
254	structures such as fibers.
255	Collagenase digestion was available not only before staining but also after specific
256	staining. This procedure helped verify the specificity of the staining and also detect
257	whether the chemical modification was resistant or sensitive to digestion (Miura et
258	al. 2015; Miura and Yamashita 2018). Protein modification, including advanced
259	glycation and long oxidation of sections at room temperature, led to resistance to
260	digestion.
261	For immunostaining substrates of the HRP enzyme for SAM observation, we first
262	attempted to convert the LM method to the SAM method. DAB and peroxide are
263	regularly used as a substrate for HRP in immunostaining. However, the result in the
264	SAM observation was unsuccessful; no remarkable products appeared following
265	staining. As high density increases AOS values (Rossman et al. 1989), we used Ni-
266	DAB instead of DAB alone and succeeded in increasing the acoustic values to
267	identify antigen locations.
268	Fresh-frozen and cytology sections, in addition to the FFPE sections, were available
269	for immunostaining for SAM. Cytoplasmic, nuclear, cell surface, and stromal
270	antigens were all recognized using this method.

271	Several limitations of this study should, however, be acknowledged. First, the
272	samples examined were limited by organ type, fixation methods. and the duration of
273	fixation. We investigated various organs, including epithelial and stromal tissues,
274	using fresh-frozen and FFPE sections, including autopsy and surgical materials, for
275	comparison. Both specific and antibody staining were applicable to various organs
276	with different fixation conditions. Second, staining procedures including heat
277	treatment or pH changes may influence the outcome of acoustic properties. Sections
278	that were not well-fixed or had an uneven surface when undergoing heating
279	treatment became detached from the glass slides. Acidic conditions led to shrinkage
280	producing thinner tissues, while alkaline conditions led to sections being more
281	readily dissolved. Ethanol-fixed tissues showed this tendency although FFPE
282	sections did not exhibit any changes. Cytology or fresh-frozen tissues must be
283	avoided for use in these conditions.
284	In utilizing our current results for a future study, we plan to apply drugs or
285	enzymes to the sections. First, anticancer drugs will be examined, including
286	cisplatin, which is known to bind to DNA in the nucleus. If these drugs show
287	structural changes with acoustic properties, SAM may enable the location of the
288	drugs to be followed. Second, the function of enzymes combined to specific materials

289	in the substrate may be activated as collagenase breaks down collagens. Other
290	proteolytic or bridging reactions may be detected by changes in acoustic properties.
291	These conformational changes are difficult to follow with LM. Third, staining and
292	enzymatic reactions can be followed, according to a time course, by observing the
293	same section. Modification of inhibition or activation in the section may be possible
294	by following acoustic properties.
295	In conclusion, specific staining or immunostaining for specific tissue components
296	increased the AOS values of each corresponding component. Samples, including
297	formalin- or ethanol-fixed, or cytology sections were available for detection following
298	staining. Collagenase digestion decreased the AOS values of collagens and other
299	protein materials. Regions rich in collagen fibers were resistant to digestion,
300	retaining high AOS values than collagen-sparse areas, which reflected collagen
301	density. In immunostaining, Ni-DAB reaction products increased the AOS values,
302	indicating antigen location, using SAM. This method of acoustic staining may be
303	applicable to detect non-chromogenic substances, the detection of which is currently
304	difficult using LM imaging.
305	

306 Acknowledgments

307	The authors would like to thank T. Moriki, Y. Egawa, Y. Kawabata, and N. Suzuki
308	for preparing the histology samples. The authors would like to thank Enago
309	(www.enago.jp) for English language review.
310	
311	Funding
312	This work was supported by a grant from the Japan Society for the Promotion of
313	Science (KAKENHI), Scientific Research Grant Number (c) 15K08375.
314	
315	Conflicts of interest
316	None.
317	

319 **References**

320	Brand S,	Weiss	EC, I	Lemor RM	, Kolios MC	. High I	Frequenc	y Ultrasoun	d Tissue
	/		- /						

- 321 Characterization and Acoustic Microscopy of Intracellular Changes. Ultrasound Med
- Biol 2008;34:1396-407.
- 323 Culjat MO, Goldenberg D, Tewari P, Singh RS. A review of tissue substitutes for
- 324 ultrasound imaging. Ultrasound Med. Biol. 2010;36:861-73.
- 325 Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Turnbull DH. Advances in
- 326 ultrasound biomicroscopy. Ultrasound Med. Biol. 2000;25:1-27.
- 327 Kolosov O V, Levin VM, Mayev RG, Senjushkina TA. The use of acoustic microscopy for
- 328 biological tissue characterization. Ultrasound Med Biol Pergamon Press. 1987;13:477-
- 329 83.
- 330 Miura K. Application of Scanning Acoustic Microscopy to Pathological Diagnosis. Microsc
- 331 Anal 2016.
- 332 Miura K, Egawa Y, Moriki T, Mineta H, Harada H, Baba S, Yamamoto S. Microscopic
- 333 observation of chemical modification in sections using scanning acoustic microscopy.
- 334 Pathol Int 2015;65:355-66.
- 335 Miura K, Katoh H. Structural and Histochemical Alterations in the Aortic Valves of Elderly

336 Patients: A Comparative Study of Aortic Stenosis, Aortic Regurgitation, and Normal

- 337 Valves. Biomed Res Int 2016;2016.
- 338 Miura K, Yamamoto S. A scanning acoustic microscope discriminates cancer cells in fluid.
- 339 Sci Rep 2015;5:15243.
- 340 Miura K, Yamashita K. Evaluation of aging, diabetes mellitus, and skin wounds by
- 341 scanning acoustic microscopy with protease digestion. Pathobiol Aging Age-related Dis
 342 2018;8:1516072.
- 343 Okawai H, Tanaka M, Dunn F. Non-contact acoustic method for the simultaneous
- 344 measurement of thickness and acoustic properties of biological tissues. Ultrasonics
- 345 1990; 28:401-10.
- 346 Rossman P, Zagzebski J, Mesina C, Sorenson J, Mazess R. Comparison of speed of sound
- 347 and ultrasound attenuation in the os calcis to bone density of the radius, femur and
- 348 lumbar spine. Clin Phys Physiol Meas 1989;10:353.
- 349 Saijo Y. Acoustic microscopy: latest developments and applications. Imaging Med London:
- 350 2009;1:47-63.
- 351 Saijo Y, Tanaka M, Okawai H, Dunn F. The ultrasonic properties of gastric cancer tissues
- 352 obtained with a scanning acoustic microscope system. Ultrasound Med Biol Pergamon
- 353 Press 1991;17:709-14.
- 354 Saijo Y, Tanaka M, Okawai H, Sasaki H, Nitta S-I, Dunn F. Ultrasonic tissue

- 355 characterization of infarcted myocardium by scanning acoustic microscopy.
- 356 Ultrasound Med Biol Pergamon Press 1997;23:77-85.
- 357 Szabo TL, Wu J. A model for longitudinal and shear wave propagation in viscoelastic
- 358 media. J Acoust Soc Am 2002;107:2437-46.
- 359
- 360
- 361

362	Figure	legends
004	Figure	regenus

- 363 Fig. 1. Principles of SAM
- 364 In SAM, the AOS values are plotted on a screen to produce images. The AOS values
- usually increase with density. SAM, scanning acoustic microscopy; AOS, attenuation of-sound.

- 368 Fig. 2. Flow chart of sample preparation
- 369 SAM, scanning acoustic microscopy
- 370
- 371 Fig. 3. Changes in AOS values following hematoxylin staining
- a: Gastric carcinoma on formalin-fixed and paraffin-embedded section. The graphs
- 373 show average \pm SD of AOS. AOS values significantly increased (p < 0.01), according to
- the length of incubation in hematoxylin dye, between 0 min (baseline) to 10 min and
- 375 10 min to 60 min. The representative areas are circled on the figure. The right upper
- 376 image is the corresponding LM images after 60 min incubation in hematoxylin.
- 377 b: Cytology of adenocarcinoma (lung primary) in ascites. Ethanol-fixed carcinoma cells
- 378 exhibited a gradual increase in AOS values from 0 min (baseline) to 10 min and 60
- 379 min after hematoxylin incubation (circle). The graphs show average \pm SD of AOS. AOS

380	values were significantly different (p<0.001) from 0 min (baseline) to 10 min, and 10
381	min to 60 min. The right upper image is the corresponding LM images after 60 min
382	incubation in hematoxylin.
383	c: Glioblastoma of the brain, fresh-frozen section. Nuclei of the glioblastoma cells in
384	dotted images show progressively increased AOS values following staining. The
385	graphs show average \pm SD of AOS. AOS values significantly increased (p < 0.01) from
386	0 min (baseline) to 10 min, and 10 min to 30 min. The representative areas were
387	circled on the figure. The right upper image is the corresponding LM images after 30
388	min incubation in hematoxylin.
389	AOS, attenuation-of-sound; LM, light microscopy; Circles, regions of interest for
390	comparison
391	
392	Fig. 4
393	Changes in AOS values following specific staining
394	a: Aniline blue staining of liver cirrhosis section and its post-collagenase digestion.
395	Unstained baseline images were altered to accentuate the fibrous portion following
396	staining, while accentuated images decreased following collagenase treatment. The
397	representative areas were circled on the figure. The corresponding LM images are

398 shown on the lower row.

|--|

- 400 displayed a higher portion at the left side of the dermis (circle), which is coincident
- 401 with fibrous ulcer bed. The baseline image changed to emphasize collagen fibers in
- 402 the dermis, which values decreased following collagenase treatment. The
- 403 corresponding LM images are displayed on the lower row.
- 404 c: Resorcin-fuchsin stain for elastic aortic fibers
- 405 Aortic media with increased AOS values following staining, which decreased slightly
- 406 following collagenase digestion (circle). The intima and externa exhibited no
- 407 remarkable changes. The corresponding LM images are displayed on the lower row.
- 408 The LM image following collagenase showed no remarkable changes.
- 409 d: PAS reaction for polysaccharides in kidney section.
- 410 Glomerular and tubular basement membrane (circle) showed greater AOS values
- 411 following PAS staining. The corresponding LM images in hematoxylin-eosin and PAS
- 412 staining are displayed on the lower row. AOS, attenuation-of-sound; LM, light
- 413 microscopy; PAS, Periodic acid-Schiff.
- 414
- 415 Fig. 5

416	Immunostaining using 3,3'-diaminobenzidine tetrahydrochloride (DAB) in ${ m NiCl}_2$
417	solution as a substrate for horseradish peroxidase
418	a: Gastric mucosa stained with anti-smooth muscle actin (SMA). Muscularis mucosae
419	and peri-glandular smooth muscles (circle) exhibited high attenuation portions
420	following staining. The corresponding hematoxylin-eosin and LM images following
421	immunostaining are shown on the lower row.
422	b: Esophagus with lymphocytic infiltration. Lymphocytes in the wall of the esophagus
423	exhibited high AOS values following immunostaining with anti-CD20 (circle). The
424	corresponding hematoxylin-eosin image and LM image following immunostaining are
425	shown on the lower row.
426	c: Adenocarcinoma in pleural effusion (cytology). Adenocarcinoma cells with irregular
427	contour exhibited high AOS values following staining with anti-epithelial (EA)
428	antigen at the surface (circle). Background small lymphocytes were negative. The
429	corresponding Papanicolaou staining image and LM immunostaining images are
430	shown on the lower row.
431	d: Adenocarcinoma cells in ascites (cytology). Immunostaining with anti-Ki-67.
432	Adenocarcinoma cells forming clusters showed dotted high AOS regions in the cluster,

434 staining image and LM immunostaining images are shown on the lower row. AOS,

- 435 attenuation-of-sound; LM, light microscopy.
- 436

	Data	Average AOS	SD	
	n	dB/mm		
Gastric ADC(histology)				
Baseline	10	5.12	0.67	
Hemato10 min	10	7.35	1.13	**
Hemato60 min	10	8.61	0.67	**
Lung ADC(cytology)				
Baseline	15	4.72	0.30	٦
Hemato10 min	15	5.95	0.50	***
Hemato60 min	15	7.55	0.83	***
GB(Frozen section)				
Baseline	5	4.42	0.79	٦
Hemato10 min	5	8.34	1.74	**
Hemato30 min	5	13.16	2.53	**

1 Table 1. Average attenuation of sound (AOS) post-hematoxylin staining

2 ADC; adenocarcinoma, Baseline; before staining, <u>HematoXmin; incubation in</u>

3 <u>hematoxylin for X min</u>, GB; glioblastoma

4 **p < 0.01, ***p < 0.001


```
Cytology specimen
                                     Tissue specimen
        Ļ
                                            \downarrow
                                Fresh frozen of 10% buffered
 95% Ethanol fix
                                formalin fix
        Ļ
                                             Ļ
 Single cell layer
                                           10um section
                                       1
            \mathbf{\overline{}}
                SAM observation, use distilled
                  water as coupling medium
                               Ļ
              Special staining or Immunostaining
                               Ļ
                       SAM observation
                               Ļ
                        LM observation
                               Ļ
              Collagenase digestion if necessary
```


HE stain

LM image of aniline blue

After Collagenase

Sirius red stain

After Collagenase

Papanicolaou staining

LM image of anti-CD20 stain

Adenocarcinoma in ascites (Cytology) unstained

Papanicolaou staining

LM image of anti-Ki 67 stain