Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing

メタデータ	言語: eng
	出版者:
	公開日: 2022-03-01
	キーワード (Ja):
	キーワード (En):
	作成者: Hiraide, Takuya, Yamoto, Kaori, Masunaga,
	Yohei, Asahina, Miki, Endoh, Yusaku, Ohkubo, Yumiko,
	Matsubayashi, Tomoko, Tsurui, Satoshi, Yamada,
	Hidetaka, Yanagi, Kumiko, Nakashima, Mitsuko, Hirano,
	Kouichi, Sugimura, Haruhiko, Fukuda, Tokiko, Ogata,
	Tsutomu, Saitsu, Hirotomo
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/00004058

1	Original	Article

2 Genetic and phenotypic analysis of 101 patients with developmental delay or 3 intellectual disability using whole-exome sequencing 4 5 Running title: Trio-WES for DD/ID 6 Takuya Hiraide^{1,2}, Kaori Yamoto¹, Yohei Masunaga¹, Miki Asahina³, Yusaku Endoh³, 7 Yumiko Ohkubo⁴, Tomoko Matsubayashi^{1,5}, Satoshi Tsurui⁶, Hidetaka Yamada⁷, 8 Kumiko Yanagi⁸, Mitsuko Nakashima², Kouichi Hirano³, Haruhiko Sugimura⁷, Tokiko 9 Fukuda¹, Tsutomu Ogata¹ and Hirotomo Saitsu² 10 11 12 ¹Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; ²Department of Biochemistry, Hamamatsu University School of Medicine, 13 14 Hamamatsu, Japan; ³Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan; ⁴Department of Pediatrics, Shizuoka 15 16 Saiseikai Hospital, Shizuoka, Japan; ⁵Department of Pediatric Neurology, Shizuoka 17 Children's Hospital, Shizuoka, Japan; ⁶Department of Pediatrics, Seirei-Numazu 18 Hospital, Numazu, Japan; ⁷Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan; ⁸Department of Genome Medicine, National 19 20 Center for Child Health and Development, Tokyo, Japan. 21

²² Correspondence: Hirotomo Saitsu, MD, PhD.

2	Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
3	Tel/Fax: +81-53-435-2327
4	E-mail: <u>hsaitsu@hama-med.ac.jp</u>
5	
6	Acknowledgments: This work was supported by the Japan Agency for Medical
7	Research and Development (AMED) (JP20ek0109301 to T.O. and JP19ek0109297 to
8	H.S.) and the Takeda Science Foundation. We would like to thank Editage
9	(www.editage.com) for English language editing.
10	
11	Conflict of Interest Statement: The authors declare that they have no conflicts of
12	interest.
13	
14	Data Availability Statement: The data that support the findings of this study are
15	available on request from the corresponding author. The data are not publicly available
16	due to privacy or ethical restrictions.

Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1

17

1

1 Abstract

2 Whole-exome sequencing (WES) enables identification of pathogenic variants, including 3 copy number variants (CNVs). In this study, we performed WES in 101 Japanese patients 4 with unexplained developmental delay (DD) or intellectual disability (ID) (63 males and 5 38 females), 98 of them with trio-WES. Pathogenic variants were identified in 54 cases (53.5%), including four cases with pathogenic CNVs. In one case, a pathogenic variant 6 7 was identified by reanalysis of exome data; and in two cases, two molecular diagnoses 8 were identified. Among 58 pathogenic variants, 49 variants occurred de novo in 48 9 patients, including two somatic variants. The accompanying autism spectrum disorder 10 and external ear anomalies were associated with detection of pathogenic variants with 11 odds ratios of 11.88 (95% confidence interval (CI) 2.52 - 56.00) and 3.46 (95% CI 1.23 12 -9.73), respectively. These findings revealed the importance of reanalysis of WES data 13 and detection of CNVs and somatic variants in increasing the diagnostic yield for 14 unexplained DD/ID. In addition, genetic testing is recommended when patients suffer from the autism spectrum disorder or external ear anomalies, which potentially suggests 15 16 the involvement of genetic factors associated with gene expression regulation.

17

18 Keywords: Whole-exome sequencing, Intellectual disability, Developmental delay,

19 Autism spectrum disorder, External ear anomalies

1 Introduction

2 Whole-exome sequencing (WES) is a comprehensive genetic test that enables the 3 detection of single nucleotide variants, insertion/deletions, and copy number variants 4 (CNVs)¹. In addition, offspring-parental trio analysis can systemically identify both 5 germline and somatic *de novo* variants, which have been reported to play important roles in neurodevelopmental disorders (NDDs)². NDDs comprise intellectual disability (ID), 6 7 spectrum disorder (ASD), attention-deficit/hyperactivity the autism disorder. 8 neurodevelopmental motor disorders, and specific learning disorders. Among these, 9 developmental delay (DD) or ID is a major condition of NDDs³. DD/ID has high clinical 10 and genetic heterogeneities, and the genetic diagnosis of DD/ID is challenging². The 11 diagnostic rate in patients with DD/ID, using WES, has been recently reported to be 27% to 39%⁴⁻⁶. Genetic diagnosis helps facilitate family planning and the coping process for 12 13 disease course, including fewer repeat investigations, discontinuation of unnecessary 14 laboratory tests, and further assessment of related medical conditions.

15 Patients with DD/ID may show various clinical symptoms, such as ASD, seizures, 16 hypotonia, facial dysmorphism, and neuroimaging abnormalities. It is important to 17 identify the key clinical features that allow the identification of patients with a high 18 probability of harboring relevant genetic variants. A recent large cohort study clarified 19 factors that influence the diagnostic yield of *de novo* variants in NDDs. These included 20 sex, abnormal cranial magnetic resonance imaging (MRI) findings, speech and walking delay, and paternal age⁷. Further analysis with detailed clinical features may help to 21 22 elucidate the clinical features related to the diagnostic yield of DD/ID in clinical settings.

In this study, we performed WES for 101 Japanese patients with unexplained DD/ID, 98 of them with trio-WES. A variety of genetic causes, including CNVs and somatic variants, were identified. Phenotypic analysis revealed that the presence of ASD and external ear anomalies with DD/ID potentially suggests the involvement of genetic factors associated with the regulation of gene expression, leading to a higher diagnostic yield.

7

8 Methods

9 **Patients**

10 This study included 101 unexplained Japanese DD/ID patients (63 males, 38 females) 11 without any identifiable non-genetic factors responsible for DD/ID, including congenital 12 infections, hypoxia, trauma, central nervous system infection or malignancy. G-banded 13 karyotyping was normal in all patients. They underwent WES at the Hamamatsu 14 University School of Medicine between June 2016 and April 2020. Among them, trio-15 WES was performed in 98 patients, but parents' samples were not available in 3 cases 16 (#402, #2059, #2686). These patients had been recruited for suspected genetic diseases, 17 in pediatric care, including patients with long-term follow-up beyond childhood. The 18 criteria for patients with DD/ID enrolled in this WES study were to have at least one of 19 additional neurological, systemic, or other clinically characteristic features. We collected 20 clinical information for each patient by retrospectively reviewing their medical records, 21 and investigated the correlation between clinical information and diagnostic yield. 22 Diagnosis of ASD is based on impaired social interaction and restricted and stereotyped behaviors by the DSM-V method⁸. We classified 84 patients into the following four 23

categories based on developmental quotient (DQ), intelligence quotient (IQ), or clinical evaluation by the attending physician if these scores were not available: profound (DQ/IQ, < 21), severe (DQ/IQ, 21–34), moderate (DQ/IQ, 35–49), and mild (DQ/IQ, 50– 70). Seventeen cases were designated as "unclassified" because only the diagnosis of DD/ID without detailed information was available. For analysis of each clinical finding, we only included patients whose corresponding information was described in the medical record. Thus, the number of assessed patients varied from 61 to 101 (Table 1).

8

9 Genetic analysis

10 This study was approved by the Institutional Review Board Committee of the 11 Hamamatsu University School of Medicine. After receiving written informed consent, 12 genomic DNA of the patients and their parents were extracted from blood leukocytes or saliva. Forty-four patients previously underwent array comparative genomic 13 hybridization (aCGH) with negative findings⁹. WES was performed using the 14 15 SureSelectXT Human All Exon v6 (Agilent Technologies, Santa Clara, CA) with 150base paired-end reads using Illumina HiSeq2500 or NextSeq500 (Illumina, San Diego, 16 17 CA). Reads were aligned to the reference genome (GRCh37) using BWA with default 18 parameters. Duplicate reads were removed using the Picard tool. Variants were identified 19 using the GATK HaplotypeCaller. Raw variants were filtered out when their parameters 20 met any of the following criteria: QD < 2.0, MQ < 40.0, FS > 60.0, MQRankSum < -12.5, 21 and ReadPosRankSum < -8.0 for single nucleotide variants; QD < 2.0, ReadPosRankSum < -20.0, and FS > 200.0 for insertion/deletions. Mosaic variants were 22 detected using Mutect2¹⁰. The final variants were annotated using Annovar¹¹ to predict 23

1 the functional impact of the coding variants. We focused on rare variants with minor allele frequencies <1% in an in-house exome database, Human Genetic Variation Database 2 (http://www.hgvd.genome.med.kvoto-u.ac.jp/)¹². 3 1KJPN, 2KJPN, or 3.5KJPN (https://ijgvd.megabank.tohoku.ac.jp/)¹³, 4 and the gnomAD database (https://gnomad.broadinstitute.org/)¹⁴. Variant pathogenicity was predicted by SIFT 5 (http://genetics.bwh.harvard.edu/pph2/), 6 (http://sift.jcvi.org/), Polyphen-2 (http://www.mutationtaster.org/)¹⁵, 7 **MutationTaster** CADD (http://cadd.gs.washington.edu/score)¹⁶ 8 and M-CAP (http://bejerano.stanford.edu/mcap/index.html)¹⁷. We also examined possible pathogenic 9 CNVs using WES data with the eXome Hidden Markov Model (XHMM)¹⁸ and 10 previously developed methods¹⁹. The identified single nucleotide variants and 11 12 insertions/deletions were confirmed by Sanger sequencing. CNVs were validated by aCGH or real-time quantitative PCR. "Pathogenic" or "Likely pathogenic" variants, 13 according to the American College of Medical Genetics and Genomics classification^{20,21}, 14 15 were defined as the disease-causing pathogenic variants. In addition, we included three variants that we reported as novel genetic causes²²⁻²⁴. 16

17

18 Statistical analyses

All statistical analyses were performed using SPSS version 26.0 (SPSS Inc., Chicago,
IL). Clinical data of patients with or without exome positive results were tested using the
two-tailed Fisher's exact test, and the odds ratio (OR) for categorical variables was
calculated. The Mann-Whitney U test was used to compare medians. Continuous

variables were compared using the Student's t-test. The significance level was set at a P value < 0.05.

3 **Results**

4 Identification of pathogenic variants by WES

5 The average read depth of the protein-coding regions of RefSeq genes was 99.29 (range 6 across all patients, 70.41–144.10), such that 99.2% of the targeted coding sequences were 7 covered by 10 reads or more (Supplemental Table S1). We found a total of 58 pathogenic 8 variants in 54 cases (53.5%, Table 1). These included three variants that we previously 9 reported as novel genetic causes²²⁻²⁴. Autosomal dominant (AD) disorders accounted for 10 48 cases. In these, 50 pathogenic variants were identified, including four CNVs and two 11 somatic variants, and two molecular diagnoses were identified in two patients (#1376 and 12 #2386). There were three cases of autosomal recessive disorders (five variants), two cases 13 with X-linked recessive disorders (two variants), and one case with X-linked dominant 14 (XLD) disorder (one variant) (Tables 2 and 3). The details of six cases have already been reported²²⁻²⁷. In AD and XLD disorders, 49 of 51 variants occurred *de novo*, further 15 16 indicating the importance of *de novo* variants in DD/ID. In one case (#1108), the 17 pathogenic variant was identified by reanalysis of exome data. One other patient (#1376) 18 had a variant that was considered as a secondary finding (see Discussion). In one 19 individual (#2386), two pathogenic variants in two genes (CDKN1C and DNM1L) were 20 detected. These caused Beckwith-Wiedemann syndrome (OMIM# 130650) and 21 encephalopathy due to defective mitochondrial and peroxisomal fission 1 (OMIM# 22 614388), respectively (Table 2). Patient #2386 displayed severe ID that could not be 23 explained by the CDKN1C variant inherited from her affected mother. Thus, the DNM1L

variant was also considered to be involved in her clinical symptoms. The details of this
 patient will be published elsewhere. The candidate variants detected by WES in the
 unsolved cases are summarized in Supplemental Table S2.

We found four CNVs ranging from 1.3 Mb to 4.4 Mb using WES data. The number of
protein-coding genes involved in the CNVs ranged from 15 to 42 (Table 3). All identified
CNVs overlapped with previously described CNVs in patients with NDDs and were
interpreted as pathogenic²¹. WES is useful for the identification of pathogenic CNVs in
DD/ID patients²⁸.

9 Somatic variants were identified in two patients (#760 and #1465) with 10 megalencephaly-capillary malformation syndrome (MCAP). Several cases of MCAP have been reported to harbor somatic variants in *PIK3CA*²⁹. However, our standard WES 11 12 using GATK HaplotypeCaller failed to identify the causative pathogenic variants due to 13 the low variant allele fractions. With a suspicion of the involvement of somatic variants, 14 we used the MuTect2 for variant calling and found the previously reported PIK3CA variants^{10,29} (Table 2). The variant allele fraction of the two variants was 11.7% (12/103 15 reads) in #760 and 7.7% (4/52 reads) in #1465. Sanger sequencing (#760) and digital PCR 16 (#1465) confirmed the somatic variant in *PIK3CA*³⁰ (Supplementary Figure S1 and S2). 17 18 Because WES achieves relatively high depth compared with that of whole-genome 19 sequencing, efforts should be made to identify somatic variants with WES data.

20

21 Correlation between clinical features and detection rates of pathogenic variants

Our DD/ID cohort was characterized by the presence of additional associated clinical findings in all patients. These included facial dysmorphism (n = 62/95, 65.3%), hypotonia (n = 43/79, 54.4%), short stature (n = 44/87, 50.6%), and seizures (n = 37/84, 44.0%).
ASD was noted in 20 of 72 individuals (25.6%), and MRI abnormalities were observed
in 51 of 92 patients (55.4%). The clinical descriptions of the patients are summarized in
Table 1 and Supplemental Table S1.

5 In our study, previously reported key clinical findings such as sex, postnatal feeding problems, abnormal cranial MRI, developmental milestone like first words and 6 7 independent walking, and paternal age were not significantly associated with 8 identification of pathogenic variants. Instead, ASD was significantly associated with a 9 positive WES result (OR, 11.88; 95% confidence interval [CI], 2.52 – 56.00) (Table 1). 10 This is consistent with previous reports describing a high diagnostic rate among ASD patients suffering from DD/ID^{31,32}. Although there was no difference in WES results with 11 12 or without facial dysmorphism (P = 0.133), the presence of external ear anomalies such 13 as low set ear, macrotia, and cryptotia significantly increased the odds of having a positive 14 WES result (OR 3.46, 95% CI 1.23 – 9.73) (Table 1, Supplemental Table S1). Abnormal 15 eyebrow morphology (P = 0.052) and birth at term (P = 0.080) tended to affect the results 16 of WES, but there were no statistically significant differences. We investigated the 17 relationship between the positive WES results and the degree of DD/ID. No correlation 18 was found between DQ/IQ value or the degree of DD/ID by dividing it into four groups 19 and positive results of WES (Table 1).

20 Discussion

The overall diagnostic yield was 53.5% in the WES study. It was high compared to those of previous WES studies for DD/ID (27% to 39%)⁴⁻⁶. The yield of WES is reportedly higher in patients with NDDs along with any additional associated conditions than in patients with NDDs alone (53% vs. 31%)³³. A previous WES study of ID patients with additional clinical features in 31 of the 33 cases reported a relatively high diagnostic yield (57%)³⁴. All DD/ID cases in our study had some associated conditions (Supplemental Table S1). Therefore, the present findings suggest that the presence of multiple phenotypic features in addition to DD/ID enriches the diagnostic yield in the context of comprehensive WES analysis, including CNVs and somatic variants.

7 The most strongly associated clinical feature with positive WES results was ASD. The 8 data suggest that DD/ID and ASD share genetic backgrounds, which have strong effects, 9 leading to higher diagnostic yields. ASD is associated with a variety of factors, including genetics and prenatal and postnatal environment³⁵. In SFARI (Simons Foundation Autism 10 11 Research Initiative) database (https://gene.sfari.org/; accessed February 2021), there are 12 listed 1003 genes implicated in ASD susceptibility. The major functional categories of ASD genes are regulation of gene expression, such as chromatin regulators and 13 transcription factors, and neuronal communication, such as synaptic function 36 . 14 15 Alterations in the functions of gene expression regulation are known to be genetically associated with ID³⁷. In patients with DD/ID and ASD, we observed that many of the 16 17 genes with pathogenic variants were involved in gene expression regulation (10/14) 18 (Supplemental Table S3).

We also found that external ear anomalies were weakly associated with positive WES results. In patients with DD/ID and external ear anomalies, 9 of 14 genes with pathogenic variants were associated with gene expression regulation in this study (Supplemental Table S4). In the development of the craniofacial region including external ear, reciprocal signaling between neural crest cells and the craniofacial ectoderm plays an important role

1 in driving craniofacial patterning and morphogenesis³⁸. The regulation of neural crest 2 development is mediated by epigenetic modifications such as DNA methylation, histone modification and chromatin remodelers³⁹. An alteration in these signals of gene 3 4 expression regulation results in a disruption of neural crest, and leads to a set of 5 syndromes and diseases affecting broad spectrum of congenital malformations and 6 DD/ID⁴⁰. Among the 54 patients with molecular diagnosis, 18 had ASD, 18 had external 7 ear anomalies, and seven had both ASD and external ear anomalies, indicating that a 8 substantial proportion of patients showed both complications in this heterogeneous 9 DD/ID population. In the study of Coffin-Siris Syndrome and Kabuki syndrome showing 10 DD/ID, ASD and external ear anomalies, the dysfunction of neural crest cells reported to 11 be caused by the mutations of genes associated with chromatin regulators^{41,42}. Therefore, 12 mutations in genes involved in gene expression regulation possibly cause ASD and/or 13 external ear anomalies in addition to DD/ID. Our data suggest that the presence of three 14 clinical features (DD/ID, ASD, and external ear anomalies) might indicate abnormalities 15 in gene expression regulation.

16 We identified pathogenic variants by reanalysis in one case with negative exome results 17 in the original WES (#1108). In this individual, the gene-disease association was 18 unknown at the time of the first analysis, but the same de novo variant in DHX30 was reported as pathogenic one year later⁴³. Previous studies have reported that reanalysis of 19 WES data may offer an additional diagnostic yield of 10-15%⁴⁴. Systematic reassessment 20 21 of exome data was recommended to be analyzed at a 2- to 3-year interval as knowledge related to gene-disease associations improved⁴⁵. It is important to reanalyze WES data 22 23 before additional testing, such as whole-genome sequencing or RNA sequencing.

1 In WES analysis, secondary findings that refer to genetic variants that are unrelated 2 to the primary medical reason for testing but may have future medical significance remain 3 concerns. In this study, one patient (#1376) had two pathogenic de novo variants, 4 including TCF4 causing Pitt-Hopkins syndrome (OMIM # 610954) and LZTR1 causing 5 Noonan syndrome 10 (OMIM # 616564) or Schwannomatosis-2, susceptibility to (OMIM 6 # 615670). The *de novo* nonsense p.(Arg576*) variant in TCF4 was considered to cause 7 profound DD in this patient. On the other hand, LZTR1 variants associated with Noonan syndrome were reported to be localized in the kelch (KT) domains⁴⁶, suggesting that the 8 9 identified missense p.(Arg688Cys) variant in the BTB (bric-a-brac, tramtrack, broad 10 complex) domain is less likely to cause Noonan syndrome. Instead, an identical variant 11 has been reported to cause schwannomatosis⁴⁷. Therefore, this patient is likely to develop 12 multiple schwannomas in various areas of the body during adulthood. The American 13 College of Medical Genetics and Genomics guidelines for reporting secondary findings 14 included a list of 59 medically actionable genes recommended for clinical genomic sequencing⁴⁸. *LZTR1* was not included in this list. However, we proposed regular imaging 15 16 for this patient because the LZTR1 variants are reportedly at risk for intracranial or spinal 17 cord schwannomas in younger patients. Appropriate genetic counseling is needed prior 18 to WES analysis, as identification of such secondary findings is expected in trio-WES. 19 In this study, we were unable to find a molecular diagnosis in almost half of the 20 patients. WES has technological limitations, including the inability to detect noncoding 21 variants, structural variants except for CNVs, epigenetic changes, and trinucleotide repeat expansion⁴⁹. The screening of fragile X syndrome, a typical trinucleotide repeat disorder, 22

has not been performed in most of our patients, and should be considered for patients with

1 DD/ID or ASD even if they do not present any characteristic clinical features for fragile X syndrome⁵⁰. In addition, some studies suggested that CNV calling from WES data had 2 limitations due to high false-positive rates and low sensitivity^{51,52}. Therefore, it is 3 4 necessary to consider the possibility of pathogenic CNV in undiagnosed patients. Whole-5 genome sequencing enable the accurate and comprehensive structural variant detection, 6 and has become widely used because of its low costs, which continue to decrease⁵³. 7 However, many potential variants of unknown significance have been detected, making 8 it difficult to evaluate variants. Recently, several studies used transcriptome sequencing to identify disease-causing variants⁵⁴. Further research is needed to develop strategies for 9 10 investigating pathogenic variants in cases that are unresolved by WES.

In conclusion, WES, as a first-line genetic analysis tool, is useful for detecting the genetic causes in patients with unexplained DD/ID. This benefits patients and their families in terms of cost-effectiveness, family planning, and patient management. Our study also suggests that the presence of ASD and external ear anomalies with DD/ID potentially indicates the involvement of genetic factors associated with gene expression regulation, thereby leading to a higher diagnostic yield.

17

18 Acknowledgments

We would like to thank the patient's family for participating in this study. This work was supported by the Japan Agency for Medical Research and Development (AMED) (JP20ek0109301 to T.O. and JP19ek0109297 to H.S.) and the Takeda Science Foundation. We would like to thank Editage (www.editage.com) for English language editing.

1 **Conflict of Interest**

2 The authors declare that they have no conflicts of interest.

3 Data Availability Statement

The data that support the findings of this study are available on request from the
corresponding author. The data are not publicly available due to privacy or ethical
restrictions.

7

References

- 1. Vissers L, van Nimwegen KJM, Schieving JH, et al. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology. *Genet Med.* 2017;19(9):1055-1063.
- 2. Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. *Nature reviews Genetics*. 2016;17(1):9-18.
- 3. Bertelli MO, Munir K, Harris J, Salvador-Carulla L. "Intellectual developmental disorders": reflections on the international consensus document for redefining "mental retardation-intellectual disability" in ICD-11. *Adv Ment Health Intellect Disabil.* 2016;10(1):36-58.
- 4. Anazi S, Maddirevula S, Faqeih E, et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. *Mol Psychiatry*. 2017;22(4):615-624.
- 5. Bowling KM, Thompson ML, Amaral MD, et al. Genomic diagnosis for children with intellectual disability and/or developmental delay. *Genome Med.* 2017;9(1):43.
- 6. Monroe GR, Frederix GW, Savelberg SM, et al. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. *Genet Med.* 2016;18(9):949-956.
- 7. Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. *Nature*. 2017;542(7642):433-438.
- 8. American Psychiatric A. *Diagnostic and statistical manual of mental disorders (5th Ed).* 2013.
- 9. Asahina M, Endoh Y, Matsubayashi T, Hirano K, Fukuda T, Ogata T. Genomewide Array Comparative Genomic Hybridization in 55 JapaneseNormokaryotypic Patients with Non-Syndromic Intellectual Disability. *Neonatal and Pediatric Medicine*. 2017;s1.
- 10. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. *Nature biotechnology*. 2013;31(3):213-219.
- 11. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. *Nucleic Acids Res.* 2010;38(16):e164.
- 12. Higasa K, Miyake N, Yoshimura J, et al. Human genetic variation database, a reference database of genetic variations in the Japanese population. *Journal of human genetics*. 2016;61(6):547-553.
- 13. Nagasaki M, Yasuda J, Katsuoka F, et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. *Nature communications*. 2015;6:8018.
- 14. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature*. 2016;536(7616):285-291.
- 15. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. *Nature methods*. 2014;11(4):361-362.
- 16. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. *Nature genetics.* 2014;46(3):310-315.
- 17. Jagadeesh KA, Wenger AM, Berger MJ, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. *Nature genetics*. 2016;48(12):1581-1586.

- 18. Fromer M, Moran JL, Chambert K, et al. Discovery and statistical genotyping of copynumber variation from whole-exome sequencing depth. *American journal of human genetics.* 2012;91(4):597-607.
- 19. Nord AS, Lee M, King MC, Walsh T. Accurate and exact CNV identification from targeted high-throughput sequence data. *BMC genomics*. 2011;12:184.
- 20. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med.* 2015;17(5):405-424.
- 21. Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). *Genet Med.* 2020;22(2):245-257.
- 22. Fukuda T, Hiraide T, Yamoto K, et al. Exome reports A de novo GNB2 variant associated with global developmental delay, intellectual disability, and dysmorphic features. *European journal of medical genetics*. 2020;63(4):103804.
- 23. Hiraide T, Watanabe S, Matsubayashi T, et al. A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder. *Molecular genetics & genomic medicine*. 2020;8(3):e1145.
- 24. Ohishi A, Masunaga Y, Iijima S, et al. De novo ZBTB7A variant in a patient with macrocephaly, intellectual disability, and sleep apnea: implications for the phenotypic development in 19p13.3 microdeletions. *Journal of human genetics*. 2020;65(2):181-186.
- 25. Hiraide T, Kubota K, Kono Y, et al. POLR3A variants in striatal involvement without diffuse hypomyelination. *Brain & development*. 2020;42(4):363-368.
- 26. Hiraide T, Nakashima M, Yamoto K, et al. De novo variants in SETD1B are associated with intellectual disability, epilepsy and autism. *Human genetics*. 2018;137(1):95-104.
- 27. Nakashima M, Tohyama J, Nakagawa E, et al. Identification of de novo CSNK2A1 and CSNK2B variants in cases of global developmental delay with seizures. *Journal of human genetics*. 2019;64(4):313-322.
- 28. Tsuchida N, Nakashima M, Kato M, et al. Detection of copy number variations in epilepsy using exome data. *Clinical genetics*. 2018;93(3):577-587.
- 29. Rivière JB, Mirzaa GM, O'Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. *Nature genetics*. 2012;44(8):934-940.
- 30. Low H, Chan SJ, Soo GH, Ling B, Tan EL. Clarity digital PCR system: a novel platform for absolute quantification of nucleic acids. *Anal Bioanal Chem.* 2017;409(7):1869-1875.
- 31. Du X, Gao X, Liu X, et al. Genetic Diagnostic Evaluation of Trio-Based Whole Exome Sequencing Among Children With Diagnosed or Suspected Autism Spectrum Disorder. *Frontiers in genetics.* 2018;9:594.
- 32. Husson T, Lecoquierre F, Cassinari K, et al. Rare genetic susceptibility variants assessment in autism spectrum disorder: detection rate and practical use. *Translational psychiatry*. 2020;10(1):77.
- 33. Srivastava S, Love-Nichols JA, Dies KA, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. *Genet Med.* 2019;21(11):2413-2421.

- 34. Xiao B, Qiu W, Ji X, et al. Marked yield of re-evaluating phenotype and exome/target sequencing data in 33 individuals with intellectual disabilities. *American journal of medical genetics Part A.* 2018;176(1):107-115.
- 35. Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. *The Lancet.* 2018;392(10146):508-520.
- 36. Satterstrom FK, Kosmicki JA, Wang J, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. *Cell.* 2020;180(3):568-584 e523.
- 37. Iwase S, Berube NG, Zhou Z, et al. Epigenetic Etiology of Intellectual Disability. *J Neurosci.* 2017;37(45):10773-10782.
- 38. Luquetti DV, Heike CL, Hing AV, Cunningham ML, Cox TC. Microtia: epidemiology and genetics. *American journal of medical genetics Part A*. 2012;158A(1):124-139.
- 39. Hu N, Strobl-Mazzulla PH, Bronner ME. Epigenetic regulation in neural crest development. *Dev Biol.* 2014;396(2):159-168.
- 40. Vega-Lopez GA, Cerrizuela S, Tribulo C, Aybar MJ. Neurocristopathies: New insights 150 years after the neural crest discovery. *Dev Biol.* 2018;444 Suppl 1:S110-S143.
- 41. Chandler RL, Magnuson T. The SWI/SNF BAF-A complex is essential for neural crest development. *Dev Biol.* 2016;411(1):15-24.
- 42. Schwenty-Lara J, Nehl D, Borchers A. The histone methyltransferase KMT2D, mutated in Kabuki syndrome patients, is required for neural crest cell formation and migration. *Human molecular genetics.* 2020;29(2):305-319.
- 43. Lessel D, Schob C, Küry S, et al. De Novo Missense Mutations in DHX30 Impair Global Translation and Cause a Neurodevelopmental Disorder. *American journal of human genetics*. 2017;101(5):716-724.
- 44. Basel-Salmon L, Orenstein N, Markus-Bustani K, et al. Improved diagnostics by exome sequencing following raw data reevaluation by clinical geneticists involved in the medical care of the individuals tested. *Genet Med.* 2019;21(6):1443-1451.
- 45. Wenger AM, Guturu H, Bernstein JA, Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. *Genet Med.* 2017;19(2):209-214.
- 46. Yamamoto GL, Aguena M, Gos M, et al. Rare variants in SOS2 and LZTR1 are associated with Noonan syndrome. *Journal of medical genetics*. 2015;52(6):413-421.
- 47. Smith MJ, Isidor B, Beetz C, et al. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis. *Neurology*. 2015;84(2):141-147.
- 48. Kalia SS, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. *Genet Med.* 2017;19(2):249-255.
- 49. Nolan D, Carlson M. Whole Exome Sequencing in Pediatric Neurology Patients: Clinical Implications and Estimated Cost Analysis. *J Child Neurol.* 2016;31(7):887-894.
- 50. Gabis LV, Hochberg O, Leon Attia O, Banet-Levi Y, Topf D, Shefer S. Prolonged Time Lag to Final Diagnosis of Fragile X Syndrome. *The Journal of pediatrics*. 2018;193:217-221.e211.
- 51. Marchuk DS, Crooks K, Strande N, et al. Increasing the diagnostic yield of exome sequencing by copy number variant analysis. *PloS one*. 2018;13(12):e0209185.
- 52. Rajagopalan R, Murrell JR, Luo M, Conlin LK. A highly sensitive and specific workflow for detecting rare copy-number variants from exome sequencing data. *Genome Med.* 2020;12(1):14.

- 53. Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and wholegenome sequencing approaches cost-effective? A systematic review of the literature. *Genet Med.* 2018;20(10):1122-1130.
- 54. Murdock DR, Dai H, Burrage LC, et al. Transcriptome-directed analysis for Mendelian disease diagnosis overcomes limitations of conventional genomic testing. *The Journal of clinical investigation*. 2021;131(1).

Clinical findings	Assessed cases	Number	%	WES positive	WES negative	p-Value	OR (95% CI)
Gender	101			54	47		
Male		63	62.4	32	31	0.541	
Female		38	37.6	22	16	0.541	
Examined age (median [range]) (years)	101	4.0 [0-42]		4.0 [0-32]	3.0 [0-42]	0.157†	
Paternal age at birth (mean [SD]) (years)	61	34 [± 5.4]		35 [± 5.4]	33 [± 5.3]	0.147‡	
Maternal age at birth (mean [SD]) (years)	61	31 [± 4.9]		31 [± 4.8]	31 [± 5.0]	0.740‡	
Family history	98	9	9.2	5	4	1.000	
Assisted reproductive technology	93	3	3.2	1	2	0.601	
Birth at term	95	81	85.3	46	35	0.080	3.29 (0.95–11.36)
Small for gestational age (10th percentile)	95	15	15.8	5	10	0.098	(000 1100)
Neonatal intensive care	94	33	35.1	16	17	0.524	
DD/ID	101	101		54	47		
DQ/IQ (median [range])	55	42 [7 - 70]		39 [7 - 69]	43 [14 - 70]	0.618†	
Profound (DQ/IQ <21)	101	26	25.7	17	9	0.178	
Severe (DQ/IQ, 21-34)	101	19	18.8	9	10	0.368	
Moderate (DQ/IQ, 35-49)	101	14	13.9	8	6	1.000	
Mild (DQ/IQ, 50-70)	101	25	24.8	13	12	1.000	
Unclassified	101	17	16.8	7	10	0.297	
Speech delay	88	84	95.5	48	36	0.318	
No single word	85	49	57.6	28	21	0.826	
Motor delay	91	82	90.1	45	37	1.000	
Unable to walk without support	85	27	31.8	15	12	1.000	
Stereotypies	76	4	5.3	4	0	0.123	
Dysphagia	82	23	28.0	11	12	0.623	
Deafness	84	6	7.1	3	3	1.000	
Sleep disorder	79	10	12.7	5	5	1.000	
Autism spectrum disorder	78	20	25.6	18	2	0*	11.88 (2.52–6.00)
Seizure	84	37	44.0	19	18	0.661	
Short stature (<-2.0SD)	87	44	50.6	24	20	0.830	
Tall stature (>2.0SD)	87	2	2.3	2	0	0.502	
Macrocephaly	82	10	12.2	7	3	0.504	
Microcephaly	82	29	35.4	19	10	0.351	

Table 1. Clinical findings of the patients.

Hypotonia

79

43

54.4

23

20

1.000

Spasticity	79	7	8.9	3	4	0.696	
Strabismus	76	16	21.1	10	6	0.575	
Facial dysmorphism	95	62	65.3	37	25	0.133	
Hypertelorism	95	8	8.4	3	5	0.465	
Abnormal palpebral fissure	95	13	13.7	8	5	0.766	
Abnormal eyebrow morphology	95	22	23.2	16	6	0.052	2.90 (1.02–8.23)
External ear anomaly	95	24	25.3	18	6	0.019*	3.46 (1.23–9.73)
Cleft palate	95	7	7.4	5	2	0.445	
Abnormal lips	95	12	12.6	8	4	0.373	
Nasal anomaly	95	22	23.2	15	7	0.147	
Dental crowding	95	9	9.5	6	3	0.498	
Micrognathia	95	14	14.7	9	5	0.563	
Microphthalmus	95	3	3.2	2	1	1.000	
Congenital heart defect	85	18	21.2	11	7	0.596	
Renal anomaly	83	3	3.6	3	0	0.246	
Limb anomaly	95	37	38.9	23	14	0.211	
Hand anomaly	95	30	31.6	19	11	0.269	
Foot deformity	95	15	15.8	10	5	0.398	
Ambiguous genitalia	95	12	12.6	4	8	0.215	
Dermatopathy	95	8	8.4	5	3	0.721	
MRI abnormalities	92	51	55.4	23	28	0.095	

Statistical Analysis: †, Mann-Whitney U test; ‡, Student's t-test; No symbols, Fisher's exact test; *, significant difference. Abbreviation: CI, Confidence interval; DD, developmental delay; DQ, developmental quotient; ID, intellectual disability; IQ, intelligence quotient; MRI, magnetic resonance imaging; OR, odds ratio; SD, standard deviation; WES, whole-exome sequencing.

Subject	DD/ID (DQ/IQ)	Gene (Transcript)	Variant	Inheritance	Known or Novel	Class	OMIM Phenotype (MIM#)	Ref
N3	Profound	<i>FOXG1</i> (NM_005249.5)	c.506del, p.(Gly169Alafs*23)	AD/de novo	Known	Pathogenic	Rett syndrome, congenital variant (613454)	
294	Mild (59)	ZBTB7A (NM_015898.4)	c.1152C>G p.(Cys384Trp)	AD/de novo	Novel	NA	NA	23
329	Profound	<i>CSNK2B</i> (NM_001320.7)	c.533_534insGT p.(Pro179Tyrfs*49)	AD/de novo	Novel	Pathogenic	Poirier-Bienvenu neurodevelopmental syndrome (618732)	26
454	Moderate (41)	ANKRD11 (NM_001256182.2)	c.1909A>T p.(Lys637*)	AD/de novo	Novel	Pathogenic	KBG syndrome (148050)	
556	Severe (26)	<i>SATB2</i> (NM_001172509.2)	c.868C>T p.(Gln290*)	AD/de novo	Known	Pathogenic	Glass syndrome (612313)	
595	Profound	<i>CTCF</i> (NM_006565.4)	c.1102C>T p.(Arg368Cys)	AD/de novo	Novel	Pathogenic	Mental retardation, autosomal dominant (615502)	
748	Moderate (42)	<i>KMT2A</i> (NM_001197104.2)	c.2530delC p.(Gln844Argfs*105)	AD/de novo	Novel	Pathogenic	Wiedemann-Steiner syndrome (605130)	
757	Profound (10)	<i>SETD1B</i> (NM_001353345.1)	c.5704C>T p.(Arg1902Cys)	AD/de novo	Novel	Likely Pathogenic	Intellectual developmental disorder with seizures and language delay (619000)	25
760	Mild (68)	<i>PIK3CA</i> (NM_006218.4)	c.3104C>T p.(Ala1035Val)	AD/ <i>de novo</i> , somatic	Known	Pathogenic	Megalencephaly-capillary malformation- polymicrogyria syndrome, somatic (602501)	
774	Mild (69)	<i>PIK3R2</i> (NM_005027.4)	c.1117G>A p.(Gly373Arg)	AD/de novo	Known	Pathogenic	Megalencephaly-polymicrogyria- polydactyly-hydrocephalus syndrome (603387)	
792	Mild (63)	BRAF (NM_004333.6)	c.722C>T p.(Thr241Met)	AD/de novo	Known	Pathogenic	Noonan syndrome (613706)	
832	Profound (7)	<i>KMT2A</i> (NM_001197104.2)	c.2565dup p.(Glu856Argfs*10)	AD/de novo	Novel	Pathogenic	Wiedemann-Steiner syndrome (605130)	
975	Mild (56)	<i>DYRK1A</i> (NM_001396.4)	c.1046G>A p.(Cys349Tyr)	AD/de novo	Novel	Likely Pathogenic	Mental retardation, autosomal dominant (614104)	
1108	Profound	<i>DHX30</i> (NM_138615.2)	c.2353C>T p.(Arg785Cys)	AD/de novo	Known	Pathogenic	Neurodevelopmental disorder with severe motor impairment and absent language (617804)	

	C (1	• • •	• 1 4•0• 11	1 1	•
Ighle / Nun	imary of nathod	ionic variants	identitied hy	v whole_evome sec	mencing
I ADIC 2. DUII	1111a1 y UI pauluy	CHIC VALIANUS		* *************************************	uuuuung.
			•	/	

1241	Mild (50)	<i>TBR1</i> (NM_006593.4)	c.443_444del p.(His148Profs*92)	AD/de novo	Novel	Pathogenic	Intellectual developmental disorder with autism and speech delay (606053)	
1276	Dec form 1 (19)	<i>TCF4</i> (NM_001083962.2)	c.1726C>T p.(Arg576*)	AD/de novo	Known	Pathogenic	Pitt-Hopkins syndrome (610954)	
1370	Protound (18)	<i>LZTR1</i> (NM_006767.4)	c.2062C>T p.(Arg688Cys)	AD/de novo	Known	Pathogenic	Schwannomatosis-2, susceptibility to (615670)	
1386	Profound (17)	<i>ARID1B</i> (NM_017519.3)	c.5616del p.(Ser1873Leufs*48)	AD/de novo	Novel	Pathogenic	Coffin-Siris syndrome (135900)	
1411	Profound	<i>EEF1A2</i> (NM_001958.5)	c.271G>A p.(Asp91Asn)	AD/de novo	Known	Pathogenic	Epileptic encephalopathy, early infantile (616409)	
1460	Moderate	GABRG2 (NM_198904.3)	c.964G>A p.(Ala322Thr)	AD/paternal	Novel	Likely Pathogenic	Epilepsy, generalized, with febrile seizures plus (607681)	
1465	Severe (31)	<i>PIK3CA</i> (NM_006218.4)	c.2176G>A p.(Glu726Lys)	AD/ <i>de novo</i> , somatic	Known	Pathogenic	Megalencephaly-capillary malformation- polymicrogyria syndrome, somatic (602501)	
1401		COASY	c.112dupT p.(Tyr38Leufs*26)	AR/maternal	Novel	Pathogenic	Neurodegeneration with brain iron	
1481	Protound	(NM_025233.7)	c.1495C>T p.(Arg499Cys)	AR/paternal	Known	Pathogenic	accumulation (615643)	
1493	Mild (59)	<i>SMARCA4</i> (NM_001128849.3)	c.1537C>T p.(Arg513Trp)	AD/de novo	Novel	Likely Pathogenic	Coffin-Siris syndrome (614609)	
1530	Moderate (49)	GNB2 (NM_005273.3)	c.229G>A p.(Gly77Arg)	AD/de novo	Novel	NA	NA	21
1539	Moderate (48)	<i>ARID1B</i> (NM_017519.3)	c.2986+1G>C	AD/de novo	Novel	Pathogenic	Coffin-Siris syndrome (135900)	
1573	Profound	<i>TUBB4A</i> (NM_001289123.1)	c.916G>A p.(Val306Ile)	AD/de novo	Known	Likely Pathogenic	Leukodystrophy, hypomyelinating (612438)	
1615	Severe (30)	GATAD2B (NM_020699.4)	c.143_144insA p.(Leu49Alafs*10)	AD/de novo	Novel	Pathogenic	GAND syndrome (615074)	
1618	Profound	<i>AP1S2</i> (NM_001272071.2)	c.179+1G>A	XLR /maternal	Novel	Pathogenic	Mental retardation, X-linked syndromic (304340)	
1625	Severe (32)	HECW2 (NM_020760.4)	c.4690G>A p.(Glu1564Lys)	AD/de novo	Novel	Likely Pathogenic	Neurodevelopmental disorder with hypotonia, seizures, and absent language (617268)	

1693	Severe (38)	HDAC8 (NM_018486.3)	c.675C>G p.(Tyr225*)	XLD /de novo	Novel	Pathogenic	Cornelia de Lange syndrome (300882)	
1730	Severe (27)	<i>RAB11B</i> (NM_004218.4)	c.202G>A p.(Ala68Thr)	AD/de novo	Known	Pathogenic	Neurodevelopmental disorder with ataxic gait, absent speech, and decreased cortical white matter (617807)	
1775	Unclassified	<i>KMT2D</i> (NM_003482.4)	c.4262G>T p.(Gly1421Val)	AD/de novo	Novel	Likely Pathogenic	Kabuki syndrome (147920)	
1785	Mild	<i>EP300</i> (NM_001429.4)	c.3857A>G p.(Asn1286Ser)	AD/de novo	Known	Likely Pathogenic	Rubinstein-Taybi syndrome (613684)	
1788	Mild (68)	<i>CTCF</i> (NM_006565.4)	c.1699C>T p.(Arg567Trp)	AD/de novo	Known	Pathogenic	Mental retardation, autosomal dominant (615502)	
1799	Moderate	<i>SPTBN2</i> (NM_006946.4)	c.541G>C p.(Ala181Pro)	AD/de novo	Novel	Likely Pathogenic	Spinocerebellar ataxia (600224)	
1928	Severe	BRAF (NM_004333.6)	c.1593G>T p.(Trp531Cys)	AD/de novo	Known	Pathogenic	Noonan syndrome (613706)	
2017	Mild (68)	<i>KMT2D</i> (NM_003482.4)	c.12448C>T p.(Gln4150*)	AD/de novo	Novel	Pathogenic	Kabuki syndrome (147920)	
2040	Unclassified	<i>SYNGAP1</i> (NM_006772.3)	c.403C>T p.(Arg135*)	AD/de novo	Known	Pathogenic	Mental retardation, autosomal dominant (612621)	
2042	Madamata	POLR3A	c.1771-6C>G p.(Pro591Metfs*9)	AR/maternal	Known	Pathogenic	Leukodystrophy, hypomyelinating, 7, with or without oligodontia and/or	24
2043	Moderate	(NM_007055.4)	c.791C>T p.(Pro264Leu)	AR/paternal	Known	Likely Pathogenic	hypogonadotropic hypogonadism (607694)	24
2120	Mild (54)	<i>NSD1</i> (NM_172349.2)	c.4340-2A>G	AD/de novo	Novel	Pathogenic	Sotos syndrome (117550)	
2123	Profound (20)	<i>PPP2R5D</i> (NM_006245.4)	c.592G>A p.(Glu198Lys)	AD/de novo	Known	Pathogenic	Mental retardation, autosomal dominant (616355)	
2177	Unclassified	<i>ARID1B</i> (NM_017519.3)	c.2528C>A p.(Ser843*)	AD/de novo	Novel	Pathogenic	Coffin-Siris syndrome (135900)	
2181	Profound (19)	<i>AP4S1</i> (NM_007077.4)	c.289C>T p.(Arg97*)	AR/paternal, maternal	Known	Pathogenic	Spastic paraplegia (614067)	
2224	Unclassified	<i>STXBP1</i> (NM_003165.6)	c.1439C>T p.(Pro480Leu)	AD/de novo	Known	Pathogenic	Epileptic encephalopathy, early infantile (612164)	

2235	Profound	<i>TOP2B</i> (NM_001330700.1)	c.187C>T p.(His63Tyr)	AD/de novo	Novel	NA	NA	22
2306	Unclassified	<i>SMARCA2</i> (NM_003070.5)	c.3610T>G p.(Phe1204Val)	AD/de novo	Novel	Likely Pathogenic	Nicolaides-Baraitser syndrome (601358)	
	<i>CDKN1C</i> (NM_000076.2)	c.209C>T p.(Pro70Leu)	AD/maternal	Known	Likely Pathogenic	Beckwith-Wiedemann syndrome (130650)		
2386	Profound (17)	DNM1L (NM_012062.5)	c.2072A>G p.(Tyr691Cys)	AD/de novo	Known	Likely Pathogenic	Encephalopathy, lethal, due to defective mitochondrial peroxisomal fission (614388)	
2409	Unclassified	<i>RBMX</i> (NM_002139.4)	c.1063dup p.(Arg355Lysfs*8)	XLR /maternal	Novel	Pathogenic	Mental retardation, X-linked, syndromic 11, Shashi type (300238)	
2539	Unclassified	<i>ACTA2</i> (NM_001141945.2)	c.536G>A p.(Arg179His)	AD/de novo	Known	Pathogenic	Multisystemic smooth muscle dysfunction syndrome (613834)	
2658	Profound	<i>ASXL1</i> (NM_015338.6)	c.2415dup p.(Thr806Hisfs*16)	AD/de novo	Novel	Pathogenic	Bohring-Opitz syndrome (605039)	
2691	Mild (50)	<i>CSNK2B</i> (NM_001320.7)	c.94G>A p.(Asp32Asn)	AD/de novo	Novel	Likely Pathogenic	Poirier-Bienvenu neurodevelopmental syndrome (618732)	

AD, autosomal dominant; AR, autosomal recessive; Class, American College of Medical Genetics and Genomics classification²⁰; C Het, compound heterozygous; DD, developmental delay; DQ, developmental quotient; Hemi, hemizygous; Hom, homozygous; ID, intellectual disability; IQ, intelligence quotient; NA, not assessed or not available; XLD, X-linked dominant; XLR, X-linked recessive.

Table 3. Summary of copy number variants identified by whole-exome sequencing.

Subject	DD/ID (DQ/IQ)	Chromosomal location	Туре	Start	End	Length (bp)	Protein coding genes	Inheritance	Class	OMIM Phenotype (MIM#)
1512	Severe (27)	6q22.1-q22.31	deletion	117,046,930	119,346,836	2,299,906	15	de novo	Pathogenic	
1665	Moderate (39)	10p12.1	deletion	25,010,650	28,824,690	3,814,040	25	de novo	Pathogenic	Chromosome 10p12-p11 deletion syndrome (61670)
2117	Moderate (45)	12p13.33- p13.32	deletion	208,283	4,645,313	4,437,030	42	de novo	Pathogenic	
2707	Severe (31)	17p11.2	deletion	16,960,879	18,315,050	1,354,171	24	de novo	Pathogenic	Smith-Magenis syndrome (18229)

Class, American College of Medical Genetics and Genomics classification²¹; DD, developmental delay; DQ, developmental quotient; ID, intellectual disability; IQ, intelligence quotient.

Subject	Gene	Gene Description	Function	Functional group
294†	ZBTB7A	Zinc finger and BTB domain containing 7A	Transcriptional repressor	GER
454	ANKRD11	Ankyrin repeat domain 11	Inhibiting ligand-dependent activation of transcriptio	1 GER
748†	KMT2A	Lysine (K)-specific methyltransferase 2A	Responsible for H3K4 methyltransferase activity	GER
792†	BRAF	v-raf murine sarcoma viral oncogene homolog B1	Regulating the MAP kinase/ERK signaling pathway,	NC
832	KMT2A	Lysine (K)-specific methyltransferase 2A	Responsible for H3K4 methyltransferase activity	GER
975	DYRK1A	Dual specificity tyrosine-phosphorylation-regulated k	Signaling protein	NC
1108	DHX30	DExH-box helicase 30	RNA-dependent RNA helicase	other
1386†	ARID1B	AT rich interactive domain 1B	Histone demethylase that demethylates Lys4 of histone H3	GER
1411†	EEF1A2	Eukaryotic translation elongation factor 1 alpha 2	Responsible for the enzymatic delivery of aminoacyl tRNAs to the ribosome.	other
1665†	10p12.1 deletion			
1775	KMT2D	Lysine methyltransferase 2D	Histone methyltransferase that methylates the H3K4	GER
1785	EP300	E1A binding protein p300	Histone acetyltransferase that regulates transcription	GER
2017	KMT2D	Lysine methyltransferase 2D	Histone methyltransferase that methylates the H3K4	GER
2306	SMARCA2	SWI/SNF related, matrix associated, actin dependent	Part of the large ATP-dependent chromatin remodelin	GER
2409	RBMX	RNA binding motif protein X-linked	Splicing control, transcription and genome integrity	GER
2658	ASXL1	ASXL transcriptional regulator 1	Chromatin-binding protein required for normal determination	GER
			Serine threonine kinase ubiquitously expressed in	
2691	CSNK2B	Casein kinase 2 beta	eukaryotic cells and involved in various cellular	other
			processes	
2707†	17p11.2 del		-	

Table S4. Causative genes identified in cases with external ear anomalies.

GER, Gene expression regulation (including chromatin regulators and transcription factors); NC, neuronal communication (synaptic function). †, Cases with findings of both autism spectrum disorder and external ear anomalies.