

Radial-artery vs saphenous-vein grafts for sequential coronary bypass grafting as a second conduit for the left coronary territory

メタデータ	言語: English
	出版者:
	公開日: 2023-04-10
	キーワード (Ja):
	キーワード (En):
	作成者: Kando, Yumi, Shiiya, Norihiko, Tsuda,
	Kazumasa, Washiyama, Naoki, Takahashi, Daisuke,
	Yamashita, Katsushi
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/00004341

1	Radial-artery vs saphenous-vein grafts for sequential coronary bypass grafting as a second conduit for
2	the left coronary territory
3	
4	Yumi Kando MD, Norihiko Shiiya MD PhD, Kazumasa Tsuda MD PhD, Naoki Washiyama MD PhD,
5	Daisuke Takahashi MD, Katsushi Yamashita, MD PhD
6	
7	First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
8	
9	Corresponding author: Norihiko Shiiya
10	First Department of Surgery, Hamamatsu University School of Medicine
11	1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
12	Fax: +81-53-435-2272, Tel: +81-53-435-2276, e-mail: shiyanor@hama-med.ac.jp
13	
14	Key Words: sequential bypass, coronary artery bypass grafting, radial artery, saphenous vein, left
15	coronary territory

16

1	Abstract

2 Objective

3	Although the radial artery graft has an adaptive property to flow demand, its flow characteristics in
4	aorto-coronary sequential bypass grafting are not well elucidated. We evaluated the differences
5	between the vein and radial artery grafts in the patency and the transit time flow meter-derived
6	parameters (flow and pulsatile index), according to the stenosis rate of terminal target vessels and the
7	number of anastomoses, in sequential bypass grafting to the left coronary territories as a second
8	conduit.
9	Methods
10	We analyzed 222 patients who underwent isolated on pump beating coronary artery bypass grafting
11	with an aorto-coronary bypass to the left coronary territory. The patients were divided into radial artery
12	group (n=154) and vein graft group (n=68). Sequential bypass was performed 1n 171 patients (127
13	radial arteries, 44 veins).
14	Results
15	Flow of the radial artery grafts was lower than that of the vein grafts (40.9 ± 22.3 vs 47.5 ± 23.8
16	mL/min, p=0.044), while it became higher as the number of anastomoses per graft increased (1: 28.9
17	\pm 16.3 vs 2: 40.9 \pm 19.9 vs 3: 55.8 \pm 27.5, p<0.001). The patency of radial artery grafts was better than

18 that of vein grafts (98.0% vs 92.6%, p=0.010; p<0.001 after propensity score weighting).

 $\mathbf{2}$

1 Conclusions

- 2 Although intraoperative flow rate of the radial artery graft is lower, it has sufficient flow reserve for
- 3 sequential bypass grafting, and its early patency is high enough. Radial artery is suitable for sequential
- 4 bypass grafting to the left coronary territories as a second arterial conduit.

1 Introduction

2	In multivessel coronary artery disease, controversy still exists about the optimal graft as a second
3	conduit to achieve complete myocardial revascularization. Despite the recommendation for its use
4	[1, 2], bilateral internal thoracic arteries grafting is underutilized because it may not be suitable for
5	the patients with diabetes and is accompanied by technical complexity [3, 4].
6	The radial artery (RA), with its suitable length and diameter, can be used as a free graft and reported
7	to be an appropriate conduit for sequential bypass to maximize arterial grafting [5, 6]. The use of RA
8	compared with the saphenous vein graft (SVG) was associated with similar ease of handling, lower
9	rate of adverse cardiac events and a higher rate of patency [7, 8, 9]. The evidence level is high because
10	several meta-analyses of the randomized control trials showed its superiority [7, 8, 9]. Preserved flow-
11	mediated vascular reactivity of the RA grafts, a feature not found in SVGs, may partly explain the
12	more favorable patency of RA grafts over SVGs [10]. On the other hand, RA grafts have a concern
13	that the patency rate is significantly influenced by the stenosis rate of the native coronary arteries [11].
14	Sequential bypass grafting is known to improve patency due to the increased distal run-off [12].
15	With SVG, sequential bypass grafts have been reported to be associated with higher mean flow
16	assessed by the intraoperative transit time flow meter (TTFM) and superior mid-term patency
17	compared with the individual grafts [13]. In performing sequential bypass grafting, the target vessel
18	stenosis and graft arrangement are crucial factors influencing the graft patency [5]. Several reports

1	have shown that sequential RA grafts were associated with better mid-term and long-term patency
2	compared with the individual RA grafts [5, 14]. However, information regarding the intraoperative
3	flow and early graft patency are scarce, although the flow-mediated reactivity is considerably
4	different between RA grafts and SVGs.
5	The objective of this study is to elucidate the differences between RA grafts and SVGs in the
6	postoperative early patency rate, intraoperative mean graft flow rate (Qm), and pulsatile index (PI),
7	examined by the TTFM, according to the stenosis rate of the terminal target vessels and the number
8	of anastomoses, in the setting of sequential bypass grafting to the left coronary territories other than
9	left anterior descending artery (LAD).
10	
10 11	Subjects
10 11 12	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242
10 11 12 13	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242 patients underwent isolated on pump beating coronary artery bypass grafting (CABG) with an aorto-
10 11 12 13 14	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242 patients underwent isolated on pump beating coronary artery bypass grafting (CABG) with an aorto- coronary bypass graft to the left coronary territory in addition to the left internal thoracic artery
10 11 12 13 14	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242 patients underwent isolated on pump beating coronary artery bypass grafting (CABG) with an aorto- coronary bypass graft to the left coronary territory in addition to the left internal thoracic artery (LITA) to LAD. After excluding 7 patients who did not undergo postoperative coronary evaluation,
10 11 12 13 14 15 16	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242 patients underwent isolated on pump beating coronary artery bypass grafting (CABG) with an aorto- coronary bypass graft to the left coronary territory in addition to the left internal thoracic artery (LITA) to LAD. After excluding 7 patients who did not undergo postoperative coronary evaluation, 12 patients who underwent sequential bypass grafting covering both the left and right coronary
10 11 12 13 14 15 16 17	Subjects From the day TTFM was introduced into our hospital (July 2011) to August 2017, a total of 242 patients underwent isolated on pump beating coronary artery bypass grafting (CABG) with an aorto- coronary bypass graft to the left coronary territory in addition to the left internal thoracic artery (LITA) to LAD. After excluding 7 patients who did not undergo postoperative coronary evaluation, 12 patients who underwent sequential bypass grafting covering both the left and right coronary territories, and 1 patient who underwent T-composite bypass grafting, 222 patients were

 $\mathbf{5}$

1	renal dysfunction in all patients. CABG was performed by four surgeons. Preoperative coronary
2	angiography was performed in all patients and the stenosis rate of the vessels was assessed by
3	experienced interventional cardiologists who performed angiography. Stenosis rate of the terminal
4	target for sequential bypass grafting was obtained. All patients underwent echocardiography
5	preoperatively and no patient had additional significant valvular pathology. Clinical information was
6	obtained from the patient charts. This study was approved by the institutional review board (21-294),
7	and waiver of informed consent was granted as this study was a retrospective analysis of collected
8	data for routine care.
9	
10	
10	Methods
10	Methods Surgical technique
10 11 12	Methods Surgical technique On pump beating CABG was performed through a full median sternotomy under general
10 11 12 13	Methods <i>Surgical technique</i> On pump beating CABG was performed through a full median sternotomy under general anesthesia in all cases. All arterial grafts were harvested in a skeletonized fashion with an ultrasonic
10 11 12 13 14	Methods <i>Surgical technique</i> On pump beating CABG was performed through a full median sternotomy under general anesthesia in all cases. All arterial grafts were harvested in a skeletonized fashion with an ultrasonic scalpel (Harmonic Scalpel; Ethicon Endo-Surgery, Inc, Blue Ash, Ohio). Milrinone solution (50
10 11 12 13 14 15	Methods <i>Surgical technique</i> On pump beating CABG was performed through a full median sternotomy under general anesthesia in all cases. All arterial grafts were harvested in a skeletonized fashion with an ultrasonic scalpel (Harmonic Scalpel; Ethicon Endo-Surgery, Inc, Blue Ash, Ohio). Milrinone solution (50 mg/L) was injected into the RA grafts and preserved in a heparinized normal saline solution. SVGs
10 11 12 13 14 15 16	Methods <i>Surgical technique</i> On pump beating CABG was performed through a full median sternotomy under general anesthesia in all cases. All arterial grafts were harvested in a skeletonized fashion with an ultrasonic scalpel (Harmonic Scalpel; Ethicon Endo-Surgery, Inc, Blue Ash, Ohio). Milrinone solution (50 mg/L) was injected into the RA grafts and preserved in a heparinized normal saline solution. SVGs were harvested in the conventional open technique and were stored in a normal saline solution. The
10 11 12 13 14 15 16 17	Methods <i>Surgical technique</i> On pump beating CABG was performed through a full median sternotomy under general anesthesia in all cases. All arterial grafts were harvested in a skeletonized fashion with an ultrasonic scalpel (Harmonic Scalpel; Ethicon Endo-Surgery, Inc, Blue Ash, Ohio). Milrinone solution (50 mg/L) was injected into the RA grafts and preserved in a heparinized normal saline solution. SVGs were harvested in the conventional open technique and were stored in a normal saline solution. The LITA was always anastomosed first to LAD in an end-to-side fashion with 8-0 polypropylene suture.

1	polypropylene running suture, followed by side-to-side anastomoses toward the proximal portion of
2	the graft. Side-to-side anastomoses were constructed in the diamond-shape with a 7.5-0
3	polypropylene suture in most cases. The proximal anastomosis was constructed on to the ascending
4	aorta with a continuous 6-0 polypropylene suture using the Enclose II device (Péters Surgical,
5	Bobigny, France). After the completion of all anastomoses and the cardiopulmonary bypass
6	discontinuation, we routinely assessed Qm (mL/min) and PI between the aorta and the first side-to-
7	side anastomosis using a TTFM equipment (HT-353, Nihon Kohden, Tokyo, Japan). PI was
8	automatically calculated by the flowmeter according to the following formula: (maximum flow -
9	minimum flow) / mean flow.
10	Postoperative management and follow-up
10 11	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins
10 11 12	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous
10 11 12 13	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous diltiazem perioperatively, followed by oral administration, to prevent spasm. Postoperative graft
10 11 12 13 14	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous diltiazem perioperatively, followed by oral administration, to prevent spasm. Postoperative graft patency was evaluated before discharge by electrocardiogram-gated multi-slice computed
 10 11 12 13 14 15 	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous diltiazem perioperatively, followed by oral administration, to prevent spasm. Postoperative graft patency was evaluated before discharge by electrocardiogram-gated multi-slice computed tomography or coronary angiography. Graft failure was defined as non-visualization or poor stringy
 10 11 12 13 14 15 16 	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous diltiazem perioperatively, followed by oral administration, to prevent spasm. Postoperative graft patency was evaluated before discharge by electrocardiogram-gated multi-slice computed tomography or coronary angiography. Graft failure was defined as non-visualization or poor stringy visibility of the graft. In the sequential grafts, each anastomotic segment was regarded as a separate
 10 11 12 13 14 15 16 17 	Postoperative management and follow-up All patients were postoperatively treated with oral aspirin, nicorandil, beta-blockers, and statins unless contraindicated. Patients who received the RA graft were routinely given intravenous diltiazem perioperatively, followed by oral administration, to prevent spasm. Postoperative graft patency was evaluated before discharge by electrocardiogram-gated multi-slice computed tomography or coronary angiography. Graft failure was defined as non-visualization or poor stringy visibility of the graft. In the sequential grafts, each anastomotic segment was regarded as a separate bypass graft. If a single distal segment of a sequential graft showed non-visualization, only the

1	segments were considered as being patent. Patency rate (%) was defined as 100 x (total number of
2	anastomotic sites - total number of anastomotic sites with stenosis or occlusion) / total number of
3	anastomotic sites. Complete revascularization was defined as the treatment of any lesion with more
4	than 50% stenosis in vessels \geq 1.5 mm as estimated on the diagnostic coronary angiogram during the
5	local heart team conference [2].
6	Statistical analyses
7	All statistical analyses were performed with the SPSS software version19.0 (IBM, Armonk, NY,
8	USA). Comparisons between the two groups were made using the Chi-square or Fisher's exact test
9	for categorical variables. The Student's t-test was used for continuous variables that followed a
10	normal distribution, and the Mann-Whitney test for those not following a normal distribution. To
11	compare the mean values of three or more groups, the one-way analysis of variance test was used for
12	the data following a normal distribution, and the Kruskal-Wallis test for the data not following a
13	normal distribution. Dunn's nonparametric comparison was used as a multiple comparison test. A p-
14	value less than 0.05 was considered statistically significant. Continuous variables were expressed in
15	means \pm standard deviations. Categorical variables were reported as frequencies and percentages.
16	To reduce the impact of graft selection bias and potential confounders in the comparison of patency
17	between the RA grafts and SVGs, inverse probability of treatment weighting (IPTW) using
18	propensity score (PS) was employed. PS was calculated using the logistic regression model that

1	incorporated all the baseline variables listed in Table 1. Since no RA grafts were used for patients on
2	hemodialysis, these patients were excluded from the IPTW analysis. The Hosmer-Lemeshow test
3	was used to assess the goodness of fit for the logistic regression model. Balance between the groups
4	after weighting was assessed using standardized mean differences (SMDs). An absolute standardized
5	difference of ≤ 0.1 was considered to indicate ideal balance and that of ≤ 0.2 was considered to
6	indicate acceptable balance [15].
7	
8	Results
9	The age of patients was 68.5 ± 9.5 years and 174 (78.4%) were men. The patients were divided
10	into the RA group (n=154) and the SVG group (n=68). The SVG group was significantly older with
11	emergent operation and renal dysfunction more prevalent than the RA group (Table 1). Operative
12	data were described in Table 2. The number of coronary anastomoses per patient was 3.9 ± 1.1 .
13	Complete revascularization was achieved in 220 patients (99.1%). Sequential bypass grafting was
14	performed in 171 (77.0%) cases. Patients in the RA group were more likely to receive sequential
15	bypass grafting with multiple anastomoses.
16	The p-value of Hosmer-Lemeshow goodness-of-fit test for the propensity score model was 0.623,
17	indicating no evidence of poor fit. After IPTW, the balances between the 2 groups were acceptable,
18	except for those in hypertension, diabetes mellitus, renal dysfunction, and the history of

1	percutaneous coronary intervention (PCI) (Table 1). Of note, 3 of the 4 unmatched factors were well
2	balanced in the original cohort.
3	RA grafts vs SVGs
4	RA grafts showed significantly lower Qm than the SVGs (40.9 ± 22.3 vs 47.5 ± 23.8 mL/min,
5	p=0.044), while PI was comparable (1.8 \pm 0.7 vs 1.9 \pm 0.7, p=0.533). The patency rate was
6	significantly higher in the RA grafts than in SVGs (295/301, 98.0% vs 112/121, 92.6%, p=0.010).
7	The stenosis rate of terminal target vessels was comparable (89.3 ± 8.7 vs 87.1 ± 11.9 , p=0.215).
8	After IPTW, the difference in patency remained highly significant; RA grafts 97.9% vs SVGs 83.4%
9	(p<0.001, odds ratio=9.445, 95% confidence interval 4.459-20.008).
10	Effects of sequential bypass grafting
11	Sequential grafts showed a significantly higher Qm and lower PI than the individual grafts (Qm:
12	47.5 ± 23.5 vs 32.0 ± 17.4, p < 0.001, PI: 1.7 ± 0.5 vs 2.1 ± 0.9, p = 0.001). There were no
13	significant differences in the early graft patency rate (343/355, 96.6% vs 64/67, 95.5%, p=0.435) and
14	the stenosis rate of terminal target vessels ($89.5 \pm 7.8\%$ vs $86.4 \pm 13.6\%$, p=0.334) between the two
15	groups.
16	When the sequential grafts were divided into those with 3 coronary anastomoses (n=33) and those
17	with 2 (n=128), Qm of the grafts with 3 anastomoses was significantly higher than that of the grafts
18	with 2 anastomoses (57.2 \pm 26.3 vs 45.0 \pm 22.1 mL/min, p =0.034), while PI was comparable (1.7 \pm

1	0.5 vs 1.7 ± 0.5 , p=1.000). There were no significant differences in the early graft patency rate
2	(97/99, 98.0% vs 246/256, 96.1%, p=0.303). The stenosis rate of terminal target vessels was 92.2 \pm
3	6.2% for those with 3 coronary anastomoses and $88.8 \pm 8.0\%$ for those with 2 (p=0.086).
4	Influence of grafted territories
5	Target vessels for the RA grafts and SVGs were described in Table 3. Covered territories were
6	similar between the RA group and SVG group for individual bypass and sequential bypass with 2
7	coronary anastomoses, while sequential bypass with 3 coronary anastomoses was predominantly
8	used in the RA group.
9	The design of sequential bypass grafting with 2 coronary anastomoses was classified into 3; that
10	covering the obtuse marginal and postero-lateral branches (C-C design; n=45), that covering the
11	diagonal and obtuse marginal / postero-lateral branches (D-C design; n=77), and that covering the
12	diagonal branches (D-D design; n=6). There were no significant differences in the early graft
13	patency, Qm, and PI among the 3 groups (Figure 1). The stenosis rate of terminal target vessels was
14	also comparable (C-C: 88.8± 7.6%; D-C: 88.9 ± 8.5%; D-D: 88.3 ± 4.1%, p=0.894).
15	Differences in the effects of sequential bypass grafting between RA grafts and SVGs
16	Early graft patency, Qm, and PI of the RA grafts and SVGs according to the number of coronary
17	anastomoses per graft were shown in Figure 2. There was a significant difference in the early graft
18	patency of the sequential grafts with 2 coronary anastomoses between the RA grafts and SVGs,

1	differences in Qm between the individual RA and double RA, individual RA and triple RA,
2	individual SVG and double SVG, and double RA and double SVG. There were no significant
3	differences in the PI. Stenosis rate of the terminal target vessels were comparable (RA grafts: 87.6 \pm
4	11.2% for the individual grafts, $88.8 \pm 8.1\%$ for the sequential grafts with 2 coronary anastomosis,
5	and 93.1 \pm 5.8% for the sequential grafts with 3 coronary anastomoses; SVGs: 85.1 \pm 15.9% for the
6	individual grafts, 88.7 \pm 7.9% for the sequential grafts with 2 coronary anastomosis, and 87.0 \pm 6.7%
7	for the sequential grafts with 3 coronary anastomosis). After IPTW, the difference between the RA
8	grafts and SVGs in the patency of the sequential grafts with 2 coronary anastomoses remained
9	highly significant (RA grafts 98.2% vs SVGs 76.4%, p<0.001, odds ratio 16.734, 95% confidence
10	interval 5.979-46.832.
10 11	interval 5.979-46.832.
10 11 12	interval 5.979-46.832. Discussion
10 11 12 13	interval 5.979-46.832. Discussion The hemodynamics of the sequential vein grafts have been reported to be superior to the individual
10 11 12 13 14	interval 5.979-46.832. Discussion The hemodynamics of the sequential vein grafts have been reported to be superior to the individual vein grafts [12, 13]. Previous studies have investigated the intraoperative flow characteristics of
10 11 12 13 14 15	interval 5.979-46.832. Discussion The hemodynamics of the sequential vein grafts have been reported to be superior to the individual vein grafts [12, 13]. Previous studies have investigated the intraoperative flow characteristics of sequential SVGs by TTFM and reported their effects on graft patency [13, 16]. Kim et al. [13]
10 11 12 13 14 15 16	interval 5.979-46.832. Discussion The hemodynamics of the sequential vein grafts have been reported to be superior to the individual vein grafts [12, 13]. Previous studies have investigated the intraoperative flow characteristics of sequential SVGs by TTFM and reported their effects on graft patency [13, 16]. Kim et al. [13] reported that the sequential SVGs compared with the individual SVGs showed a higher mean flow
10 11 12 13 14 15 16 17	interval 5.979-46.832. Discussion The hemodynamics of the sequential vein grafts have been reported to be superior to the individual vein grafts [12, 13]. Previous studies have investigated the intraoperative flow characteristics of sequential SVGs by TTFM and reported their effects on graft patency [13, 16]. Kim et al. [13] reported that the sequential SVGs compared with the individual SVGs showed a higher mean flow with a superior mid-term patency. They also reported that as the number of anastomoses per graft

1	the present study, the sequential grafts showed significantly greater mean flow and lower PI than the
2	individual grafts, and the mean flow of RA grafts increased proportionately to the number of
3	anastomoses. These results were consistent with the previous studies on SVGs and showed that the
4	hemodynamic superiority of sequential bypass is also true for the RA grafts. Interestingly, this
5	hemodynamic superiority of the sequential grafts was not associated with better early patency in the
6	present study. This may be explained by the fact that 8/12 of the occluded anastomoses on the
7	sequential grafts were found on the terminal end-to-end anastomosis, and only two side-to-side
8	anastomoses were occluded without concomitant occlusion of terminal anastomosis (data not
9	shown). Since graft flow immediately before the terminal anastomosis is not increased by sequential
10	bypass grafting, its patency seems to have depended on the quality of anastomosis and run off of the
11	final target vessel.
12	Although the flow-mediated vascular reactivity measured in the long-term has been reported to be
13	preserved in the RA grafts but not in SVGs [10], no study evaluated the difference in intraoperative
14	flow characteristics between the two grafts in aorto-coronary sequential bypass grafting.
15	Intraoperative flow reserve depends on several factors including the flow-mediated vasodilation
16	(endothelium-dependent) and the drugs directly acting on the vascular smooth muscles. The
17	endothelial function may also be temporarily affected by operative maneuvers during harvesting,
18	preservation, and anastomosis. Therefore, flow reserve of the RA grafts during surgery may be

1	considerably different from those measured in the long-term. Concerning the early graft patency and
2	the sufficiency of perioperative myocardial blood supply, it is important to know the graft flow
3	reserve per se, as a net effect of several contributing factors including the flow-mediated
4	vasodilation. The majority of previous studies have focused on the flow reserve of the composite
5	LITA-RA graft design [17, 18], which primarily depends upon the flow capacity of LITA. By
6	evaluating the influence of the number of anastomoses per graft on the flow of aorto-coronary
7	sequential grafts, we were able to evaluate it independently from the capacity of inflow artery. We
8	showed that flow through the RA grafts increased proportionately to the number of anastomoses,
9	although flow itself was lower than that of SVGs. This means that RA grafts had a flow reserve that
10	was sufficient to fulfill the need of sequential bypass grafting, and the low flow rate did not result
11	from a limited flow capacity but reflected the low flow demand; a finding consistent with the
12	preserved vascular reactivity of the RA grafts.
13	Concerning the aorto-coronary individual grafts, intraoperative flow of the RA grafts has generally
14	been shown to be lower than that of SVGs [19, 20]. Our results were consistent with these reports.
15	However, some authors reported controversial results [21, 22], which may partly be explained by the
16	difference in the technique of graft harvesting, graft preparation, and CABG. Santarpino et al.
17	reported that RA grafts showed higher Qm and lower PI than SVGs in the circumflex territory [22].
18	They used pedicled RA grafts but did not show the detail of graft preparation, such as the use of

1	high-pressure distention, to reverse the spasm that was anticipated in the pedicled technique [23].
2	Ennker et al. reported that Qm and PI after conventional CABG were not different between the two
3	grafts [21]. Coronary flow demand after conventional CABG with cardiac arrest should be increased
4	as a consequence of global myocardial ischemia, which may have resulted in vasodilation of RAs to
5	meet the increased demand. In our study, CABG was performed on the empty beating heart with the
6	use of intraluminal shunts, so that energy debt during revascularization should have been minimum.
7	As a result, coronary flow demand was not as high as that in the Ennker' study.
8	Several authors have shown that sequential RA grafts are associated with better mid-term and long-
9	term patency [5, 6, 14, 24]. Adaptive property of RA grafts to maintain flow velocity seems to play a
10	role in this regard because high blood flow velocity and increased wall shear stress have been
11	reported to have a positive influence in preventing the development of intimal hyperplasia and
12	subsequent arteriosclerosis of the graft, which are responsible for late graft failure [13, 15, 25]. The
13	result of the present study that RA grafts had higher patency despite the lower flow rate than the
14	SVGs suggests that adaptive property of RA grafts may also be beneficial to early graft patency by
15	maintaining flow velocity when the target vessels have low flow demand.
16	Competitive flow has been recognized as one of the main causes of graft failure, especially for the
17	RA grafts that has the adaptability to flow demand [26]. The degree of stenosis in the native
18	coronary artery significantly influences the patency rate [11, 27, 28] and grafting to a coronary artery

1	with a low-grade stenosis increases the risk of competitive flow [11]. Because the severity of
2	native artery stenosis may be variable among the target vessels of a sequential graft,
3	one may anticipate that the patency rate drops as the number of anastomoses per graft
4	increases. In the present study, the patency rate of sequential grafting was not affected by
5	the number of anastomoses per graft. This may be because we selected a coronary artery with
6	a high-grade stenosis as the final target vessel. Nakajima et al. [27] reported that in the sequential
7	RA grafts, severity of stenosis in the most distal target has a significant impact on the competitive
8	flow and long-term patency in all targets. Their results support our speculation.
9	In the SVGs, on the other hand, the effect of competitive flow has been reported to be less
10	significant and the patency of the SVGs has been suspected to be poorly associated with the native
11	coronary stenosis [25]. In the present study, the stenosis rate of the terminal target vessels was high
12	enough and comparable between the RA grafts and SVGs, and between the individual grafts and
13	sequential grafts. Therefore, target vessel stenosis does not seem to have influenced the observed
14	differences in the patency rate.
15	The run-off of the target coronary artery is another powerful determinant of the graft patency [26].
16	Several investigators have reported that, with the most distal target of a sequential graft having the
17	greatest flow reserve and a good run-off, the proximal segment would benefit from the increased
18	blood flow rate throughout the entire conduit resulting in superior graft patency [12, 13, 16, 29]. The

1	distal run-off is the cumulative blood flow in the post-stenotic region of target vessels [16]. LAD
2	have the largest run-off followed by the diagonal and the obtuse marginal branches of the left
3	coronary artery [26]. The right coronary artery (RCA) has the lowest run-off limited by the thin right
4	ventricular myocardium [26]. Achouh et al. [14] reported that RA graft patency was higher for the
5	diagonal branches compared to the circumflex branches and RCA. In the present study, only the
6	grafts to the left coronary territories were evaluated and no differences in Qm and patency were
7	observed among the three graft designs (C-C, D-C, and D-D). Therefore, it is also unlikely that the
8	observed differences in Qm and patency rate were affected by the grafted territories.
9	Study limitations
10	This study was limited by the inherent disadvantages of the retrospective single-center design. The
11	results may be highly susceptible to the technique of graft harvesting and preparation, such as the
12	no-touch technique for SVGs and the use of different instruments for skeltonization of the RAs. Qm
13	may also be considerably different among the patients undergoing off pump CABG, conventional
14	CABG on the arrested heart [19], and on pump beating CABG. Therefore, the results may not be
15	applicable when a different operation technique is employed, as stated in the discussion section. The
16	patient's background was considerably different between the RA and SVG group, reflecting our graft
17	selection policy of using RA grafts for younger patients and avoiding its use in patients with end-
18	stage renal disease or in emergency settings. Although IPTW was employed to reduce the graft

1	selection bias, the 2 groups were not well balanced in several aspects. These factors, together with
2	other potential confounding factors that were not evaluated, may have contributed to the observed
3	difference in the patency rate. Finally, since long-term outcomes were not investigated, whether the
4	present results could be reflected in the long-term benefits remains to be determined. However, the
5	finding that RA graft flow increased proportionately to the number of coronary anastomoses does
6	not seem influenced by such limitations, suggesting the sufficient flow reserve for sequential bypass
7	and preserved vascular reactivity of the RA grafts. Together with its sufficiently high early patency
8	rate, preserved reactivity to flow demand may have a positive impact on the long-term patency of
9	RA grafts.
10	
11	Conclusions
12	RA grafts have sufficient flow reserve for sequential bypass grafting. Early patency rate of the
13	sequential RA grafts is high enough, although intraoperative flow rate is lower than the sequential
1314	sequential RA grafts is high enough, although intraoperative flow rate is lower than the sequential SVGs, presumably because of its adaptive properties to the flow demand. RA is suitable as a conduit
13 14 15	sequential RA grafts is high enough, although intraoperative flow rate is lower than the sequential SVGs, presumably because of its adaptive properties to the flow demand. RA is suitable as a conduit for sequential bypass grafting to the left coronary territories as a second arterial conduit.
13 14 15 16	sequential RA grafts is high enough, although intraoperative flow rate is lower than the sequential SVGs, presumably because of its adaptive properties to the flow demand. RA is suitable as a conduit for sequential bypass grafting to the left coronary territories as a second arterial conduit.
13 14 15 16 17	sequential RA grafts is high enough, although intraoperative flow rate is lower than the sequential SVGs, presumably because of its adaptive properties to the flow demand. RA is suitable as a conduit for sequential bypass grafting to the left coronary territories as a second arterial conduit. Acknowledgments: We are grateful to Professor Eisaku Okada, PhD, for the valuable support in the

- 2 Compliance with ethical standards
- 3 Conflict of interest: All authors have no conflicts of interest to report.
- 4 Ethical approval: The study was approved by the institutional review board of Hamamatsu
- 5 University School of Medicine (21-294).
- 6

-	T .	
	Figure	legends
T	Inguiv	regenus

2	Figure 1. Early gra	ft patency rate	(a). mean	bypass graft fle	ow (b), and	pulsatile index (c) of the
_			(,,	- /	(-),		- /

- 3 sequential bypass graft with 2 coronary anastomoses according to the grafted territories.
- 4 Data are shown in mean \pm standard deviation.
- 5 Qm: mean bypass flow, PI: pulsatile index, CC: sequential bypass grafting to 2 branches of the
- 6 circumflex coronary artery, DC: sequential bypass grafting to a diagonal branch and a branch of the
- 7 circumflex coronary artery, DD: sequential bypass grafting to 2 diagonal branches
- 8 Figure 2. Early graft patency rate (a), mean bypass graft flow (b), and pulsatile index (c) of the
- 9 radial artery grafts and saphenous vein grafts according to the number of coronary anastomosis per
- 10 graft.

11	Data are show	vn in mean	\pm standard	deviation.
----	---------------	------------	----------------	------------

- 12 RA: radial artery, SVG: saphenous vein graft, Qm: mean bypass flow, PI: pulsatile index
- 13 *1: p=0.007, *2: p=0.048, *3: p<0.001, *4: p=0.009, *5: p=0.044

1 References

2	[1]	Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U et al. 2018
3	ESC/EA	ACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:87-165.
4	[2]	Aldea GS, Bakaeen FG, Pal J, Fremes S, Head SJ, Sabik J et al. The Society of Thoracic
5	Surgeor	ns Clinical Practice Guidelines on Arterial Conduits for Coronary Artery Bypass Grafting.
6	Ann Th	orac Surg 2016;101:801-9.
7	[3]	Raja SG, Benedetto U, Husain M, Soliman R, De Robertis F, Amrani M. Does grafting of
8	the left	anterior descending artery with the in situ right internal thoracic artery have an impact on late
9	outcom	es in the context of bilateral internal thoracic artery usage? J Thorac Cardiovasc Surg
10	2014;14	48:1275-81.
11	[4]	Venardos N, Reece TB, Cleveland JC, Jr., Aftab M, Pal J, Fullerton DA et al. Training for
12	Multiple	e Arterial Grafting: A Thoracic Surgery Resident Survey. Ann Thorac Surg 2021;111:1901-
13	07.	
14	[5]	Hosono M, Murakami T, Hirai H, Sasaki Y, Suehiro S, Shibata T. The Risk Factor Analysis
15	for the l	Late Graft Failure of Radial Artery Graft in Coronary Artery Bypass Grafting. Ann Thorac
16	Cardiov	vasc Surg 2019;25:32-38.
17	[6]	Emir M, Kunt AG, Çiçek M, Bozok Ş, Karakişi SO, Uğuz E et al. Sequential radial artery
18	for core	onary artery bypass grafting: five-year follow-up and evaluation with multi-detector row

1	computed	tomography.	Cardiovasc	Revasc	Med 20)12;13:272-6.
	1					/

 Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: A Systematic Review Meta-analysis. JAMA 2020;324:179-87. [8] Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	2	[7] Gaudino M, Benedetto U, Fremes S, Ballman K, Biondi-Zoccai G, Sedrakyan A et al.
 Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: A Systematic Review Meta-analysis. JAMA 2020;324:179-87. [8] Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic: radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Bacza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorae Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	3	Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular
 Meta-analysis. JAMA 2020;324:179-87. [8] Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	4	Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: A Systematic Review and
 [8] Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic: radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	5	Meta-analysis. JAMA 2020;324:179-87.
 Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorae Cardiovase Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorae Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	6	[8] Gaudino M, Benedetto U, Fremes S, Biondi-Zoccai G, Sedrakyan A, Puskas JD et al.
 8 2018;378:2069-77. 9 [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. 10 Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft 11 surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 12 61. 13 [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic: 14 radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 15 2010;122:861-7. 16 [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict 17 of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. 18 [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	7	Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med
 9 [9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al. Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. 13 [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristic: radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	8	2018;378:2069-77.
 Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristics radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	9	[9] Cao C, Manganas C, Horton M, Bannon P, Munkholm-Larsen S, Ang SC et al.
 surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:25 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristics radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predict of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	10	Angiographic outcomes of radial artery versus saphenous vein in coronary artery bypass graft
 61. [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristics radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predicto of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	11	surgery: a meta-analysis of randomized controlled trials. J Thorac Cardiovasc Surg 2013;146:255-
 [10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristics radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predictor of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	12	61.
 radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predicto of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	13	[10] Webb CM, Moat NE, Chong CF, Collins P. Vascular reactivity and flow characteristics of
 2010;122:861-7. [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predictor of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	14	radial artery and long saphenous vein coronary bypass grafts: a 5-year follow-up. Circulation
 [11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predicted of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	15	2010;122:861-7.
 of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6. [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for 	16	[11] Moran SV, Baeza R, Guarda E, Zalaquett R, Irarrazaval MJ, Marchant E et al. Predictors
18 [12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for	17	of radial artery patency for coronary bypass operations. Ann Thorac Surg 2001;72:1552-6.
	18	[12] O'Neill MJ, Jr., Wolf PD, O'Neill TK, Montesano RM, Waldhausen JA. A rationale for the

1	use of sequential coronary artery bypass grafts. J Thorac Cardiovasc Surg 1981;81:686-90.
2	[13] Kim HJ, Lee TY, Kim JB, Cho WC, Jung SH, Chung CH et al. The impact of sequential
3	versus single anastomoses on flow characteristics and mid-term patency of saphenous vein grafts in
4	coronary bypass grafting. J Thorac Cardiovasc Surg 2011;141:750-4.
5	[14] Achouh P, Isselmou KO, Boutekadjirt R, D'Alessandro C, Pagny JY, Fouquet R et al.
6	Reappraisal of a 20-year experience with the radial artery as a conduit for coronary bypass grafting.
7	Eur J Cardiothorac Surg 2012;41:87-92.
8	[15] Austin PC, Stuart EA. Moving towards best practice when using inverse probability of
9	treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in
10	observational studies. Stat Med 2015;34:3661-79.
11	[16] An K, Mei J, Zhu J, Tang M. Correlates of haemodynamic flow characteristics of
12	sequential saphenous vein grafts in coronary artery bypass grafting. Interact Cardiovasc Thorac Surg
13	2019;28:683-88.
14	[17] Jung JS, Chung CH, Lee SH, Cho SH, Lee JH, Ryu JG et al. Flow characteristics of LIMA
15	radial composite sequential bypass grafting and single LIMA and saphenous vein sequential bypass
16	grafting performed under OPCAB. J Cardiovasc Surg (Torino) 2012;53:537-44.
17	[18] Tagusari O, Kobayashi J, Bando K, Niwaya K, Nakajima H, Ishida M et al. Early
18	adaptation of the left internal thoracic artery as a blood source of y-composite radial artery grafts in

1 off-pump coronary artery bypass grafting. Heart Surg Forum 2003;6:E93-8.

2	[19]	Balacumaraswami L, Abu-Omar Y, Selvanayagam J, Pigott D, Taggart DP. The effects of
3	on-pumj	p and off-pump coronary artery bypass grafting on intraoperative graft flow in arterial and
4	venous o	conduits defined by a flow/pressure ratio. J Thorac Cardiovasc Surg 2008;135:533-9.
5	[20]	Niclauss L. Techniques and standards in intraoperative graft verification by transit time
6	flow me	asurement after coronary artery bypass graft surgery: a critical review. Eur J Cardiothorac
7	Surg 20	17;51:26-33.
8	[21]	Ennker J, Wanner M, Gehle P, Ennker IC, Rosendahl U. Postoperative evaluation of radial
9	artery gi	rafts for coronary artery bypass grafting by transit-time Doppler flow measurements. Thorac
10	Cardiov	asc Surg 2001;49:365-8.
11	[22]	Santarpino G, Onorati F, Cristodoro L, Scalas C, Mastroroberto P, Renzulli A. Radial
12	artery gi	aft flowmetry is better than saphenous vein on postero-lateral wall. Int J Cardiol
13	2010;14	3:158-64.
14	[23]	Maruyama T, Kohno H, Ishida K, Ishizaka T, Funabashi N, Kobayashi Y et al. Change of
15	luminal	diameter of skeletonized and non-skeletonized radial artery graft at early and late
16	postoper	rative period. Heart Vessels 2016;31:474-81.
17	[24]	Schwann TA, Zacharias A, Riordan CJ, Durham SJ, Shah AS, Habib RH. Sequential radial
18	artery gi	rafts for multivessel coronary artery bypass graft surgery: 10-year survival and angiography

1	results.	Ann	Thorac	Surg	2009;88:3	1-9.
---	----------	-----	--------	------	-----------	------

2	[25]	Shimizu T, Ito S, Kikuchi Y, Misaka M, Hirayama T, Ishimaru S et al. Arterial conduit
3	shear stre	ess following bypass grafting for intermediate coronary artery stenosis: a comparative study
4	with saph	nenous vein grafts. Eur J Cardiothorac Surg 2004;25:578-84.
5	[26]	Nappi F, Bellomo F, Nappi P, Chello C, Iervolino A, Chello M et al. The Use of Radial
6	Artery fo	r CABG: An Update. Biomed Res Int 2021;2021:5528006.
7	[27]	Nakajima H, Kobayashi J, Toda K, Fujita T, Shimahara Y, Kasahara Y et al. Determinants
8	for succe	ssful sequential radial artery grafting to the left circumflex and right coronary arteries.
9	Interact C	Cardiovasc Thorac Surg 2011;12:125-9.
10	[28]	Yie K, Na CY, Oh SS, Kim JH, Shinn SH, Seo HJ. Angiographic results of the radial artery
11	graft pate	ency according to the degree of native coronary stenosis. Eur J Cardiothorac Surg
12	2008;33::	341-8.
13	[29]	Vural KM, Sener E, Taşdemir O. Long-term patency of sequential and individual

14 saphenous vein coronary bypass grafts. Eur J Cardiothorac Surg 2001;19:140-4.

1 Table 1. Patient's characteristics

	Original				After IPTW		
	RA	SVG	P-value	SMD	RA	SVG	SMD
	(n=154)	(n=68)			(n=195)	(n=213)	
Age (years)	66.6 ± 9.6	72.7 ± 7.8	< 0.001	0.645	68.1 ± 9.4	69.6 ± 7.3	0.184
Male gender	122 (79.2)	52 (76.5)	0.646	0.067	153 (78.5)	183 (85.9)	0.197
Body surface area (m ²)	1.8 ± 0.4	1.7 ± 0.5	0.003	0.440	1.8 ± 0.4	1.8 ± 0.4	0.004
Hypertension	123 (79.9)	53 (77.9)	0.744	0.047	157 (80.5)	190 (89.6)	0.253
Hyperlipidemia	125 (81.2)	42 (61.8)	0.002	0.448	157 (80.1)	180 (84.5)	0.114
Diabetes mellitus	95 (62.1)	36 (52.9)	0.201	0.186	120 (61.5)	160 (75.5)	0.299
Smoking history	82 (53.2)	37(54.4)	0.873	0.023	105 (53.8)	108 (50.7)	0.064
Cerebrovascular accident	9 (5.8)	4 (5.9)	0.604	0.002	12 (6.2)	6 (2.8)	0.164
Peripheral vascular disease	9 (5.8)	9 (13.2)	0.063	0.270	17 (8.7)	13 (6.1)	0.105
Renal dysfunction (Scr>1.3mg/dL)	14 (9.1)	22 (32.4)	< 0.001	0.630	17 (8.7)	42 (19.8)	0.320
Hemodialysis	0 (0)	18 (26.5)	< 0.001	0.968	-	-	-
Atrial fibrillation	31 (20.1)	10 (14.7)	0.337	0.139	37(19.0)	42 (19.7)	0.022
Carotid artery stenosis	11 (7.1)	10 (14.7)	0.076	0.258	22 (11.3)	20 (9.4)	0.054
PCI history	41 (26.6)	16 (23.5)	0.627	0.071	47 (24.1)	80 (37.6)	0.288
Ejection fraction (%)	60.6 ± 14.3	59.7 ± 16.4	0.900	0.060	61.1 ± 14.2	62.4 ± 16.2	0.082
Emergency operation	20 (13.0)	29 (42.6)	< 0.001	0.714	34 (17.4)	40 (18.9)	0.034
Intra-aortic balloon pumping	8 (5.2)	11 (16.2)	0.007	0.392	12 (6.1)	12 (5.7)	0.007
Number of disease vessels	2.8 ± 0.5	2.7 ± 0.5	0.129	0.176	2.7 ± 0.5	2.8 ± 0.4	0.065

Single-vessel disease	3 (1.9)	0 (0)	0.332	0.168	4 (2.1)	0 (0)	0.202
Double-vessel disease	31 (20.1)	22 (32.4)	0.049	0.286	43 (22.1)	49 (23.0)	0.023
Triple-vessel disease	120 (77.9)	46 (67.6)	0.104	0.236	148 (75.9)	164 (77.0)	0.023
Left main disease	57 (37.0)	29 (42.6)	0.427	0.115	78 (40.0)	88 (41.3)	0.028

1 Values are n (%) or mean ± standard deviation.

2 IPTW: inverse probability of treatment weighting, RA: radial artery, SVG: saphenous vein graft, SMD: standardized mean difference,

3 Scr: serum creatinine, HD: hemodialysis, PCI: percutaneous coronary intervention

1 Table 2. Operative data

 $\mathbf{2}$

	RA (n=154)	SVG (n=68)	P value
Coronary anastomosis per patient	4.0 ± 1.0	3.5 ± 1.0	0.002
Coronary anastomosis per graft	2.2 ± 0.4	2.1 ± 0.3	0.110
(sequential bypass)			
Sequential bypass	127 (82.5)	44 (64.7)	0.004
Complete revascularization	154 (100)	66 (97.1)	0.093
Operation time (min)	456.3 ± 86.6	465.6 ± 97.2	0.545
Cardiopulmonary bypass time (min)	211.3 ± 55.6	206.8 ± 60.0	0.556

3 Values are expressed as n (%) or mean ± standard deviation

4 RA: radial artery, SVG: saphenous vein graft

 $\mathbf{5}$

1 Table 3. Target vessels

 $\mathbf{2}$

	Target	RA		SVG	
Graft		Number	Number of	Number of	Number of
	vessei	of grafts	anastomosis	grafts	anastomosis
Individual	D	9	9	9	9
	С	26	26	23	23
Sequential with 2	D-D	4	8	2	4
coronary anastomoses	D-C	55	110	22	44
	C-C	32	64	13	26
Sequential with 3	D-D-C	3	9	0	0
coronary anastomoses	D-C-C	24	72	5	15
	C-C-C	1	3	0	0

3 RA: radial artery, SVG: saphenous vein graft, C: left circumflex artery, D: Diagonal branch

Fig 1b

Fig 1c

