

Disc degeneration could be recovered after chemonucleolysis with condoliase. -1 year clinical outcome of condoliase therapy-

メタデータ	言語: English
	出版者:日本整形外科学会
	公開日: 2023-10-02
	キーワード (Ja):
	キーワード (En):
	作成者: Banno, Tomohiro, Hasegawa, Tomohiko,
	Yamato, Yu, Yoshida, Go, Arima, Hideyuki, Oe, Shin,
	Mihara, Yuki, Yamada, Tomohiro, Ide, Koichiro,
	Watanabe, Yuh, Kurosu, Kenta, Nakai, Keiichi,
	Matsuyama, Yukihiro
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10271/00004371
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Title: Disc degeneration could be recovered after chemonucleolysis with condoliase.

-1 year clinical outcome of condoliase therapy-

Authors: Tomohiro Banno, M.D., Ph.D., Tomohiko Hasegawa, M.D., Ph.D., Yu Yamato, M.D., Ph.D.,

Go Yoshida M.D., Ph.D., Hideyuki Arima, M.D., Ph.D., Shin Oe, M.D., Ph.D., Yuki Mihara, M.D.,

Ph.D., Tomohiro Yamada, M.D., Koichiro Ide, M.D., Yuh Watanabe, M.D., Kenta Kurosu, M.D.,

Keiichi Nakai, M.D., Yukihiro Matsuyama, M.D., Ph.D.

Affiliation: Department of Orthopaedic Surgery, Hamamatsu University School of Medicine,

Hamamatsu, Shizuoka, Japan

Corresponding Author's name and complete mailing address:

Tomohiro Banno, M.D, PhD.

Department of Orthopaedic Surgery

Hamamatsu University School of Medicine

1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan

Phone: +81-53-435-2299; Fax: +81-53-435-2296; Email: tomohiro.banno0311@gmail.com

IRB approval

All study participants provided informed consent, and the study design was approved by the appropriate ethics review boards in Hamamatsu University School of Medicine (No. 18-220) and all patients provided written informed consent.

Conflict of interest

We have nothing to disclose.

2 Background

- 3 Condoliase-induced chemonucleolysis is a less-invasive alternative treatment for lumbar disc herniation
- 4 (LDH); however, its long-term clinical outcome is still unclear. This study aimed to investigate 1-year
- 5 clinical outcomes and assess radiographs after chemonucleolysis with condoliase.

6 Methods

- 7 We enrolled patients with LDH who received condoliase injection with a follow-up period of >1 year. Sixty
- 8 patients (37 men, 23 women; mean age, 44.5 ± 18.9 years; mean follow-up period, 22.0 ± 6.0 months) were

9 analyzed. Changes in disc height and degeneration were evaluated using magnetic resonance imaging. Visual

- 10 analog scale (VAS) scores for leg and back pain and the Oswestry disability index (ODI) were obtained. All
- 11 data were assessed at baseline, 1-month, 3-month, and 1-year follow-up.
- 12 **Results**

Surgical treatment was subsequently required in 8 patients (12.5%) after condoliase therapy. Their ODI and VAS scores for leg pain and back pain significantly improved at 1 year, as in those who received condoliase therapy only. On MRI, progression of Pfirrmann grade was observed in 23 patients (44.2%) at 3 months; however, 8 patients recovered to baseline at 1 year. The mean disc height decreased at 3 months; however, it recovered at 1 year. Disc height recovery (disc recovery rate >50%) was observed in 30.8% of the patients. Patients with disc height recovery were significantly younger than those without. Patients with longer symptom duration (\geq 1 year) showed significantly lower rates of effectiveness compared with those with 20 shorter symptom durations (<1 year).

21 Conclusions

- 22 Chemonucleolysis with condoliase is a safe and minimally invasive treatment. Disc degeneration induced
- 23 by chemonucleolysis could be recovered, particularly in younger patients. Prolonged symptom duration had
- 24 adverse effects on outcome; thus, therapeutic intervention at the optimal time is needed.

26 Introduction

28	Chemonucleolysis is a less invasive treatment for lumbar disc herniation (LDH), which induces chemical
29	dissolution of the nucleus pulposus of the intervertebral disc [1-3]. It is considered an intermediate procedure
30	between conservative and surgical treatment. Chemonucleolysis with chymopapain for the treatment of LDH
31	was first reported by Smith in 1964 [4]. It has been widely used as an alternative treatment for LDH in the
32	1980s and 1990s throughout Europe and the United States, with excellent clinical outcomes [5-7].
33	Chemonucleolysis with chymopapain is safer, with an overall mortality rate of 0.019%, than surgery [8].
34	However, chymopapain is currently unavailable for use because of its severe adverse events, including
35	anaphylaxis, infection, hemorrhage, and neurological events [7]. Chondroitin sulfate ABC endolyase
36	(condoliase) is a pure mucopolysaccharidase derived from the gram-negative rod Proteus vulgaris [9].
37	Condoliase has high substrate specificity for chondroitin sulfate and hyaluronic acid, which are
38	glycosaminoglycans of proteoglycans and abundant in the nucleus pulposus [10]. In contrast to chymopapain
39	condoliase lacks protease activity, thus inducing chemonucleolysis with less damage to the surrounding
40	tissues, such as nerves and vessels [11-13]. In clinical phase III studies, condoliase shows significantly better
41	improvements in leg pain compared with placebo without any significant adverse events [14, 15]. Based on
42	these results, this treatment has been approved in Japan for clinical use for LDH [16]. It has been widely
43	used in patients with LDH since it became clinically available in 2018. The reported effectiveness of this
44	treatment is 70%-85% without any major adverse event [17, 18]. After condoliase injection, decreased

45	herniation size is frequently observed; however, disc degeneration progresses as well by dissolution of the
46	nucleus pulposus. In a previous work, Banno et al. [17] revealed that 35.7% of the patients showed decreased
47	disc height of \geq 20%, 42.9% showed progression of disc signal change, and 61.9% showed a reduction in
48	disc herniation after condoliase injection within 3 months. On the other hand, Szypryt et al. [6] reported a
49	slight recovery of disc height and signal change after chemonucleolysis by chymopapain at 1 year compared
50	with 1 month after injection. However, the long-term effects of condoliase on intervertebral disc
51	degeneration and clinical outcomes remain unclear. Therefore, the objective of this study was to investigate
52	1-year clinical outcomes and assess radiographs after chemonucleolysis with condoliase in patients with
53	LDH.
54	
01	
55	Materials and Methods
55 56	Materials and Methods Patient recruitment
55 56 57	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients
55 56 57 58	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients provided written informed consent. We retrospectively evaluated the patients who received intradiscal
55 56 57 58 59	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients provided written informed consent. We retrospectively evaluated the patients who received intradiscal condoliase injection for LDH since August 2018 in our department and completed a minimum follow-up of
 55 56 57 58 59 60 	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients provided written informed consent. We retrospectively evaluated the patients who received intradiscal condoliase injection for LDH since August 2018 in our department and completed a minimum follow-up of 1 year. The following conditions were indications for intradiscal condoliase injection: unilateral lower
 55 56 57 58 59 60 61 	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients provided written informed consent. We retrospectively evaluated the patients who received intradiscal condoliase injection for LDH since August 2018 in our department and completed a minimum follow-up of 1 year. The following conditions were indications for intradiscal condoliase injection: unilateral lower extremity pain with or without back pain, nerve root compression by a herniated disc confirmed using
 55 56 57 58 59 60 61 62 	Materials and Methods Patient recruitment This study was approved by the institutional review board of our institution (No. 18-220), and all patients provided written informed consent. We retrospectively evaluated the patients who received intradiscal condoliase injection for LDH since August 2018 in our department and completed a minimum follow-up of 1 year. The following conditions were indications for intradiscal condoliase injection: unilateral lower extremity pain with or without back pain, nerve root compression by a herniated disc confirmed using magnetic resonance imaging (MRI), neurological signs consistent with the distribution of the compressed

64	cauda equine syndrome, severe and progressive motor deficit, multi-segmental nerve root symptoms due to
65	multilevel disc herniation, and other spinal disorders. We excluded patients with trans-ligamentous
66	herniation and spondylolisthesis from the analysis. We identified 97 patients with LDH who were
67	administered condoliase injection between August 2018 and March 2020 at our institute. Among them, 17
68	patients who were lost to follow-up, 6 with spondylolisthesis, 10 with trans-ligamentous herniation, and 4
69	with inadequate data were excluded. In total, 60 patients (37 men, 23 women; mean age, 44.5 ± 18.9 years;
70	mean follow-up period, 22.0 ± 6.0 months) were finally enrolled in this study.
71	
72	Procedure
73	The patient was placed in a semi-lateral decubitus position, and the image arm was adjusted so that adjacent
74	endplates of the disc were visualized in parallel. Under fluoroscopic guidance, a 21-gauge disc-puncture
75	needle was inserted from the contralateral side of the herniation into the intervertebral disc. Condoliase was
76	dissolved in 1.2 mL of saline to prepare a 1.25 U/mL solution. After confirming that the needle tip was
77	positioned in the center of the disc, a single 1 mL dose was injected. All injections were performed under
78	local anesthesia by registered board-certified spinal surgeons who were well trained in the intradiscal
79	injection technique. All patients were carefully monitored for 2 h after injection to ensure immediate safety
80	and were allowed to return home without prophylactic antibiotic administration.
81	

82 Data collection and clinical assessment

83	The following demographic and clinical data were extracted from medical charts: age, sex, herniation level,
84	history of discectomy at the same level as intradiscal injection, duration of symptoms before injection, and
85	adverse events. To assess pain intensity and health-related quality of life, we collected data on the visual
86	analog scale (VAS) for leg and back pain and the Oswestry disability index (ODI) at baseline, 1-month, 3-
87	month, and 1-year visit. Patients whose VAS for leg pain improved by 50% or more at 1 year from baseline
88	and did not require surgery were defined as effective for condoliase therapy.
89	We generally do not perform operations for 3 months after condoliase injection to judge the effect; however,
90	if the pain is extremely severe to tolerate, the operation is decided by each doctor even within that period.
91	Radiographic assessment
92	The MRI results were examined at baseline and 3 months and 1 year after injection. Disc height was
93	calculated at the midpoint of the end plate based on the central slice of the sagittal image. The degree of
94	affected-disc degeneration was assessed using the Pfirrmann classification system [19]. Images were
95	compared to evaluate changes in disc height, disc degeneration, and herniation size. Disc height recovery
96	rate was calculated as follows: (1 year disc height – 3 month disc height) / (baseline disc height – 3 month
97	disc height) \times 100. Disc height recovery rate of more than 50% was defined as disc height recovery. In
98	addition, Pfirrmann grade recovery between 3 months and 1 year was defined as disc degeneration recovery.
99	Radiographic assessment was performed by three spine surgeons and decided by the majority consensus.
100	The intra- and inter-observer reliabilities of disc height measurement was assessed using the intra-class
101	correlation coefficient (ICC).

103 Statistical analysis

104 We divided the patients into those who needed surgery at the same level after injection due to ineffectiveness 105 of condoliase therapy during the follow-up periods (group O) and those who did not require surgery after 106 injection (group C). Additionally, in group C, the patients were divided according to whether or not the disc 107 height recovered. Furthermore, we compared the outcome according to preoperative symptom duration: 108 symptom duration less than 1 year (short duration, group S) and 1 year and more (long duration, group L). 109 Demographic data and radiographic parameters were compared between these groups using the Student's t-110 test, Mann-Whitney U test, chi-squared test, and Fisher exact test. All statistical analyses were performed 111 using SPSS version 23.0 (SPSS Inc., Chicago, IL, USA). A p-value of <0.05 was considered statistically

112 significant.

113

114 **Results**

115

Patient demographic data and baseline characteristics are summarized in Table 1. None of the patients developed anaphylactic shock or any neurologic sequelae. Four patients experienced rash within 3 days of injection, which was resolved with standard dermatological treatment. No patients demonstrated new-onset spondylolisthesis after condoliase therapy. Of the 64 patients who were followed up for >1 year, surgical treatment was subsequently required in 8 (12.5%) (group O). Among the 60 patients whose entire data were

121	obtained, 13 showed insufficient improvement (8 patients with operation and 5 patients with VAS
122	improvement of <50% for leg pain); therefore, condoliase therapy was effective in 47 patients (78.3%). The
123	mean operative period was 3.4 months (0-10 months) after condoliase injection. Four patients experienced
124	temporary pain relief; however, they needed surgery because of the recurrence of pain. Three patients
125	reported no pain relief, and one patient showed deteriorated symptoms after condoliase injection due to an
126	increase in herniation size that required an emergency operation. No intergroup differences in age, sex,
127	herniation level, symptom duration, history of discectomy, and disc degeneration were observed between
128	groups O and C (Table 2). VAS scores (leg pain and back pain) and ODI significantly improved from baseline
129	to 1-year post-treatment in both groups, and no intergroup differences were observed at each time point
130	(Figure 1). In 52 patients who did not require surgical treatment after condoliase treatment (group C), the
131	mean VAS scores (leg pain and back pain) and ODI were significantly improved from 1 month to 1 year
132	after injection compared with baseline $(p < 0.01)$ (Figure 2).
133	With regard to MRI findings, 39 patients (75.0%) showed a reduction in disc herniation size at 1 year.
134	Comparison of MRI findings before and 3 months after injection showed progression of Pfirrmann grade in
135	23 patients (44.2%); however, only 8 patients (15.4%) recovered to baseline at 1 year. The mean disc height
136	significantly decreased at 3 months after injection (8.4–6.8 mm, $p < 0.05$); however, it significantly recovered
137	at 1 year (6.8–7.3 mm, $p < 0.05$) (Figure 3). The intra- and inter-observer ICC of disc height were 0.983 and
138	0.942, respectively. The disc height recovery rate was 31.4% on average, and 16 patients (30.8%) showed
139	positive outcomes in this process (disc height recovery rate >50%). Patients with disc height recovery were

140	significantly younger; however, no significant differences were found in sex, herniation level, symptom
141	duration, history of discectomy, and disc degeneration between the groups (Table 3). Moreover, patients with
142	disc height recovery had a higher incidence of Pfirrmann grade recovery than those without disc height
143	recovery (38% vs. 6%) (Table 3).
144	The patients were divided according to the duration of symptoms; 42 patients (70.0%) had short symptom
145	duration (< 1 year) (group S) and 18 (30.0%) had long symptom duration (\geq 1 year) (group L). The number
146	of patients who required surgery was four (9.5%) in group S and four (22.2%) in group L. The number of
147	patients who showed effectiveness (VAS of leg pain improvement \geq 50% from baseline) of condoliase
148	therapy was 36 (85.7%) in group S and 11 (61.1%) in group L. The rate of effectiveness was significantly
149	lower in group L; however, no differences were found in age, sex, herniation level, symptom duration, history
150	of discectomy, disc degeneration, VAS score, and ODI between the groups (Table 4).
151	
152	Case presentation
153	The patient, an 18-year-old female with L5/S-disc herniation, exhibited right lower extremity pain consistent
154	with the distribution of compressed nerve roots. Pain relief was achieved 2 weeks after condoliase injection
155	without any adverse event. Decreases in disc height and signal change were observed at 3 months after
156	injection compared with pre-injection. They recovered at 1 year, accompanied by reduction of the herniated

- 157 disc (Figure 4).
- 158

159 **Discussion**

161 We showed that sufficient pain relief was achieved in 78.3% of patients with LDH over 1 year by 162 chemonucleolysis with condoliase. Consistent with other reports [14, 18], significant improvement in pain 163 was observed at 3 months after injection, and the condition of patients was maintained until 1 year (Figure 164 2). In clinical phase III studies, condoliase showed significant improvement in leg pain compared with 165 placebo, and the improvement was maintained until 52 weeks after injection [14]. However, we showed that 166 12.5% of the patients who underwent condoliase therapy for LDH subsequently required surgery within 1 167 year. Age, sex, herniation level, symptom duration, or disc degeneration showed no significant association 168 (Table 1). Previous reports revealed that this treatment could be less effective for patients with older age, a 169 history of discectomy, a history of epidural or nerve root block, spondylolisthesis, and spinal instability [17, 170 18]. Similarly, the ODI and VAS scores for leg pain and back pain in patients who required surgery after 171 condoliase therapy significantly improved at 1 year compared with those who underwent only condoliase 172 therapy. Therefore, identifying the optimal time for surgery in cases with insufficient effect after 173 chemonucleolysis with condoliase is crucial. 174 Progressing disc degeneration by dissolution of the nucleus pulposus is one of the adverse events of 175 chemonucleolysis with condoliase, with a reported incidence of 41.3% to 53.7% based on the Pfirrmann 176 grade progression [14, 17, 18]. In this study, although no new onset of instability occurred, progression of 177Pfirmann grade was observed in 23 patients (44.2%) at 3 months. Among them, 8 patients (15.4%)

178	recovered to baseline at 1 year. Moreover, disc height recovery (disc recovery rate $> 50\%$) was observed in
179	30.8% of the patients. Szypryt et al. [6] reported some cases with slight disc height reconstitution and signal
180	intensity recovery at 1 year compared with 1 month after chemonucleolysis with chymopapain.
181	Chemonucleolysis by condoliase was less invasive for around tissue than that by chymopapain [20]; however,
182	the long-term effects of condoliase on the intervertebral disc remain unknown. An experimental study
183	reported regeneration of intervertebral discs after chemonucleolysis [11, 20, 21]. For clinical application, we
184	showed that disc height loss was 20% on average at 3 months and recovered to 13% at 1 year after condoliase
185	injection. Sugimura et al. [20] conducted an experimental study using monkeys and reported that
186	glycosaminoglycan content somewhat recovered 28 weeks after injection of condoliase. The effect of
187	chemonucleolysis on the nucleus pulposus was temporary, and after the enzyme activity disappeared, the
188	intervertebral disc could be regenerated. Interestingly, this phenomenon was observed in younger patients
189	(Table 3). By contrast, discectomy promotes disc height loss of 18% at 3 months and progresses to 26% at 2
190	years after surgery [22]. Intradiscal condoliase injection indeed promotes disc degeneration, and the impact
191	is likely to be less than that of discectomy.
192	The long prognosis of LDH was good, and sufficient pain relief was achieved even when treated
193	conservatively [23]. A cohort study revealed that the pain in approximately half of the patients lasted for
194	over 1 year, and prolonged leg pain duration was identified as one of the negative prognostic factors [24, 25].
195	The present study found that the rate of patients who responded to treatment was lower in patients with a

196 symptom duration of > 1 year (Table 4). Many reports have revealed that prolonged duration of symptoms

197	has negative effects on postoperative outcome in patients with LDH [25-28]. Therefore, ineffective
198	conservative treatment should not be continued endlessly, and intervention at the optimal time is important.
199	The present study had two main limitations. First, the number of cases enrolled was relatively small. Second,
200	the mean follow-up period of 22.0 ± 6.0 months was short. Further clinical surveys involving a larger number
201	of patients with longer follow-up periods are needed to determine the prognostic factors for condoliase
202	therapy and changes in disc degeneration. Third, we did not compare the clinical outcomes between patients
203	who underwent intradiscal condoliase therapy and conservative controls. Spontaneous reduction in disc
204	herniation is frequently observed, especially in the case of trans-ligamentous herniation; thus, a good
205	prognosis can be expected using conservative treatment [29, 30]. Chiba et al. [14] revealed that decreases in
206	herniated mass volumes were observed significantly more frequently in the condoliase group than in the
207	control group.
208	However, to the best of our knowledge, our study revealed favorable clinical outcomes for patients with
209	LDH treated using chemonucleolysis with condoliase over a 1-year follow-up.
210	
211	Conclusions
212	
213	Chemonucleolysis with condoliase is safe, highly effective, and minimally invasive. It could be an alternative
214	treatment for LDH; however, 12.5% of the patients required surgical treatment within 1 year after condoliase
215	therapy. Disc degeneration induced by chemonucleolysis could be recovered, particularly in younger patients.

- 216 Prolonged duration of symptoms had adverse effects on outcome; thus, therapeutic intervention at the
- 217 optimal time is crucial.

219	Reference	ces
220	1.	Nordby EJ, Fraser RD, Javid MJ. Chemonucleolysis. Spine (Phila Pa 1976) 1996 May
221	1;21(9):1	102-5.
222	2.	Brown MD. Update on Chemonucleolysis. Spine1996;21(24S):62S-8S.
223	3.	Simmons JW, Nordby EJ, Hadjipavlou AG. Chemonucleolysis: the state of the art. Eur Spine J
224	2001 Jun	;10(3):192-202.
225	4.	Smith L. Enzyme Dissolution of the Nucleus Pulposus in Humans. JAMA 1964 Jan 11;187:137-
226	40.	
227	5.	Shields CB, Reiss SJ, Garretson HD. Chemonucleolysis with chymopapain: results in 150
228	patients.	J. Neurosurg 1987 Aug;67(2):187-91.
229	6.	Szypryt EP, Gibson MJ, Mulholland RC, Worthington BS. The long-term effect of
230	chemonu	cleolysis on the intervertebral disc as assessed by magnetic resonance imaging. Spine (Phila Pa
231	1976) 19	87 Sep;12(7):707-11.
232	7.	Wardlaw D. Sciatica caused by disc herniation: Why is Chymopapain Chemonucleolysis denied
233	to our pa	tients? Int J Spine Surg 2016;10:44.
234	8.	Nordby EJ, Wright PH, Schofield SR. Safety of chemonucleolysis. Adverse effects reported in
235	the Unite	ed States, 1982-1991. Clin Orthop Relat Res 1993 Aug;(293):122-34.
236	9.	Yamagata T, Saito H, Habuchi O, Suzuki S. Purification and properties of bacterial
237	chondroi	tinases and chondrosulfatases. J Biol Chem 1968 Apr 10;243(7):1523-35.

238	10.	Hamai A, Hashimoto N, Mochizuki H, Kato F, Makiguchi Y, Horie K, Suzuki S. Two distinct
239	chondro	itin sulfate ABC lyases. An endoeliminase yielding tetrasaccharides and an exoeliminase
240	preferen	tially acting on oligosaccharides. J Biol Chem 1997 Apr 4;272(14):9123-30.
241	11.	Kato F, Mimatsu K, Iwata H, Miura T. Comparison of tissue reaction with chondroitinase ABC
242	and chy	mopapain in rabbits as the basis of clinical application in chemonucleolysis. Clin Orthop Relat Res
243	1993 Ma	ar;(288):294-302.
244	12.	Olmarker K, Danielsen N, Nordborg C, Rydevik B. Effects of chondroitinase ABC on intrathecal
245	and peri	pheral nerve tissue. An in vivo experimental study on rabbits. Spine (Phila Pa 1976) 1991
246	Jan;16(1	1):43-5.
247	13.	Olmarker K, Stromberg J, Blomquist J, Zachrisson P, Nannmark U, Nordborg C, Rydevik B.
248	Chondro	pitinase ABC (pharmaceutical grade) for chemonucleolysis. Functional and structural evaluation
249	after loc	al application on intraspinal nerve structures and blood vessels. Spine (Phila Pa 1976) 1996 Sep
250	1;21(17)):1952-6.
251	14.	Chiba K, Matsuyama Y, Seo T, Toyama Y. Condoliase for the Treatment of Lumbar Disc
252	Herniati	on: A Randomized Controlled Trial. Spine (Phila Pa 1976) 2018 Aug 1;43(15):E869-e76.
253	15.	Matsuyama Y, Chiba K, Iwata H, Seo T, Toyama Y. A multicenter, randomized, double-blind,
254	dose-fin	ding study of condoliase in patients with lumbar disc herniation. J Neurosurg Spine 2018
255	May;28((5):499-511.
256	16.	Matsuyama Y, Chiba K. Condoliase for treatment of lumbar disc herniation. Drugs Today (Barc)

- 257 2019 Jan;55(1):17-23.
- 258 17. Banno T, Hasegawa T, Yamato Y, Yoshida G, Yasuda T, Arima H, Oe S, Ushirozako H, Yamada
- 259 T, Ide K, Watanabe Y, Matsuyama Y. Clinical outcome of condoliase injection treatment for lumbar disc
- 260 herniation: Indications for condoliase therapy. J Orthop Sci 2020 Feb 25.
- 261 18. Okada E, Suzuki S, Nori S, Tsuji O, Nagoshi N, Yagi M, Fujita N, Nakamura M, Matsumoto M,
- 262 Watanabe K. The effectiveness of chemonucleolysis with condoliase for treatment of painful lumbar disc
- herniation. J Orthop Sci 2020 Jul 23.
- 264 19. Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic Resonance Classification
- of Lumbar Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2001;26(17):1873-8.
- 266 20. Sugimura T, Kato F, Mimatsu K, Takenaka O, Iwata H. Experimental chemonucleolysis with
- 267 chondroitinase ABC in monkeys. Spine (Phila Pa 1976) 1996 Jan 15;21(2):161-5.
- 268 21. Kato F, Iwata H, Mimatsu K, Miura T. Experimental chemonucleolysis with chondroitinase
- ABC. Clin Orthop Relat Res 1990 Apr; (253):301-8.
- 270 22. McGirt MJ, Eustacchio S, Varga P, Vilendecic M, Trummer M, Gorensek M, Ledic D, Carragee
- 271 EJ. A prospective cohort study of close interval computed tomography and magnetic resonance imaging
- after primary lumbar discectomy: factors associated with recurrent disc herniation and disc height loss.
- 273 Spine (Phila Pa 1976) 2009 Sep 1;34(19):2044-51.
- 274 23. Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Hanscom B, Skinner JS, Abdu WA,
- 275 Hilibrand AS, Boden SD, Deyo RA. Surgical vs nonoperative treatment for lumbar disk herniation: the

276	Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA 2006 Nov 22;296(20):2441-
277	50.

278	24.	Konstantinou K, Dunn KM, Ogollah R, Lewis M, van der Windt D, Hay EM. Prognosis of
279	sciatica	and back-related leg pain in primary care: the ATLAS cohort. Spine J 2018 Jun;18(6):1030-40.
280	25.	Rihn JA, Hilibrand AS, Radcliff K, Kurd M, Lurie J, Blood E, Albert TJ, Weinstein JN. Duration
281	of symp	otoms resulting from lumbar disc herniation: effect on treatment outcomes: analysis of the Spine
282	Patient	Outcomes Research Trial (SPORT). J Bone Joint Surg Am 2011 Oct 19;93(20):1906-14.
283	26.	Schoenfeld AJ, Bono CM. Does Surgical Timing Influence Functional Recovery After Lumbar
284	Discecte	omy? A Systematic Review. Clin Orthop Relat Res 2015;473(6):1963-70.
285	27.	Støttrup CC, Andresen AK, Carreon L, Andersen M. Increasing reoperation rates and inferior
286	outcom	e with prolonged symptom duration in lumbar disc herniation surgery - a prospective cohort study.
287	Spine J	2019 Sep;19(9):1463-9.
288	28.	Nygaard ØP, Kloster R, Solberg T. Duration of leg pain as a predictor of outcome after surgery
289	for lum	bar disc herniation: a prospective cohort study with 1-year follow up. J Neurosurg Spine
290	2000;92	2(2):131.
291	29.	Komori H, Shinomiya K, Nakai O, Yamaura I, Takeda S, Furuya K. The natural history of

herniated nucleus pulposus with radiculopathy. Spine (Phila Pa 1976) 1996 Jan 15;21(2):225-9.

- 293 30. Yukawa Y, Kato F, Matsubara Y, Kajino G, Nakamura S, Nitta H. Serial magnetic resonance
- 294 imaging follow-up study of lumbar disc herniation conservatively treated for average 30 months: relation
- between reduction of herniation and degeneration of disc. J Spinal Disord 1996 Jun;9(3):251-6.

297	Figure legends
298	Figure 1
299	Comparison of the Oswestry disability index and visual analog scale following condoliase injection
300	between groups O and C.
301	Abbreviations: C, condoliase group; O, operation after condoliase group. * indicates p<0.05
302	
303	Figure 2
304	Bar graphs of changes in the Oswestry disability index (ODI) and visual analog scale (VAS) following
305	condoliase injection. The ODI and VAS for back and leg pain improved significantly at 1 month, 3 months,
306	and 1 year after injection (p < 0.05). * indicates p<0.05
307	
308	Figure 3
309	Time course change of disc height. The mean disc height was significantly decreased at 3 months after
310	injection; however, it significantly recovered at 1 year ($p < 0.05$).
311	
312	Figure 4
313	Case 1: An 18-year-old woman.
314	Baseline sagittal (A) and axial (B) T2-weighted magnetic resonance images (MRI) showing disc herniation
315	at L5/S. Sagittal and axial MRI taken 3 months (C and E) and 1 year (D and F) after condoliase injection.

Variables	Data (n=60)	
Age (years)	44.5 ± 18.9	
Female	23 (38.3%)	
Herniation level		
L2/3	1 (1.7%)	
L3/4	4 (6.7%)	
L4/5	26 (43.3%)	
L5/S	29 (48.3%)	
Symptom duration (months)	10 [1-60]	
History of discectomy at the same level	6 (10.0%)	
Pfirrmann classification		
Grade II	4 (6.7%)	
Grade III	47 (78.3%)	
Grade IV	9 (15.0%)	
Disc height (mm)	8.4 ± 1.6	
VAS for leg pain (cm)	7.3 ± 2.2	
VAS for back pain (cm)	5.4 ± 2.8	
ODI (%)	42.2 ± 19.7	

Table 1 Demographic and baseline characteristics of the patients

Continuous data are presented as mean ± standard deviation of median [range]. Categorical data are presented as number (%). Abbreviations: VAS, visual analog scale; ODI, Oswestry Disability Index.

	Group C	Group O	p-value
	(n = 52)	(n = 8)	
Age (y)	44.4 ± 19.6	45.6 ± 15.2	0.695
Female	19 (36.5%)	4 (50.0%)	0.361
Herniation level			0.833
L2/3	1 (1.9%)	0	
L3/4	4 (7.7%)	0	
L4/5	22 (42.3%)	4 (50.0%)	
L5/S	25 (48.1%)	4 (50.0%)	
Symptom duration (months)	9.4 ± 10.4	15.0 ± 13.3	0.419
History of discectomy at the same level	4 (7.7%)	2 (25.0%)	0.178
Pfirrmann classification			0.770
Grade II	3 (5.8%)	1 (12.5%)	
Grade III	41 (78.8%)	6 (75.0%)	
Grade IV	8 (15.4%)	1 (12.5%)	
Disc height (mm)	8.5 ± 1.6	8.2 ± 1.6	0.664

Table 2 Comparison of demographic and baseline characteristics of groups C and O

Continuous data are presented as mean \pm standard deviation of median [range]. Categorical data are presented as number (%). Abbreviations: C, condoliase group; O, operation after condoliase group. *p<0.05

		Disc	height	Disc	height	p-value
		recovery (+)		recovery (-)		
		(n = 16)		(n = 36)		
Age (y)		25.1 ± 7	.5	52.9 ± 17.0		< 0.001*
Female		6 (37.5%)		13 (36.1%)		0.924
Herniation level						0.176
L2/3		0		1 (2.8%)		
L3/4		0		4 (11.1%)		
L4/5		5 (31.3%)		17 (47.2%)		
L5/S		11 (68.8	S%)	14 (38.9	9%)	
Symptom duration (me	onths)	$9.5 \pm 9.$	1	9.4 ± 11	.1	0.965
History of discectomy	at the same level	2 (12.5%)		2 (5.6%)	0.360
Pfirrmann classificatio	n					0.205
Grade II		0		2 (5.6%)		
Grade III		15 (93.8%)		26 (72.2%)		
Grade IV		1 (6.3%)		8 (22.2%)		
Pfirrmann grade recov	ery	6 (37.5%	6)	2 (5.6%)		0.007*
Preoperative disc heig	ht (mm)	8.2 ± 1.2	2	8.6 ± 1.8		0.358
VAS for leg pain	baseline	6.2 ± 2.1	3	$7.2 \pm 2.$	5	0.224
(cm)	3 month	2.4 ± 2.6	6	$2.8 \pm 3.$	0	0.711
	1 year	1.2 ± 1.0	6	$1.7 \pm 2.$	2	0.414
VAS for back pain	baseline	4.8 ± 2.	5	5.5 ± 3.	1	0.461
(cm)	3 month	2.5 ± 2.1	3	$2.3 \pm 2.$	3	0.790
	1 year	2.0 ± 1.7	7	$1.7 \pm 2.$	3	0.694
ODI (%)	baseline	33.1 ± 1	9.2	43.5 ± 1	19.1	0.099
	3 month	15.8 ± 1	4.4	16.8 ± 1	15.2	0.836
	1 year	12.0 ± 9	.7	13.8 ± 1	15.5	0.700

Table 3 Comparison of imaging findings between the patients with and without disc height recovery.

Continuous data are presented as mean \pm standard deviation of median [range]. Categorical data are presented as number (%). Abbreviations: VAS, visual analog scale; ODI, Oswestry Disability Index. *p<0.05

	Group S	Group L	p-value
	(n = 42)	(n = 18)	
Age (y)	44.1 ± 18.2	45.6 ± 21.1	0.787
Female	15 (35.7%)	8 (44.4%)	0.524
Herniation level			0.150
L2/3	1 (2.4%)	0	
L3/4	2 (4.8%)	2 (11.1%)	
L4/5	15 (35.7%)	11 (61.1%)	
L5/S	24 (57.1%)	5 (27.8%)	
Symptom duration (months)	5.0 ± 3.1	22.6 ± 13.0	< 0.001*
History of discectomy at the same level	3 (7.1%)	1 (5.6%)	0.653
Pfirrmann classification			0.587
Grade II	3 (7.1%)	1 (5.6%)	
Grade III	34 (81.0%)	13 (72.2%)	
Grade IV	5 (11.9%)	4 (22.2%)	
Disc height (mm)	8.5 ± 1.6	8.3 ± 1.8	0.586
VAS for leg pain (cm)	7.2 ± 2.3	7.4 ± 2.0	0.830
VAS for back pain (cm)	5.1 ± 2.7	6.1 ± 2.9	0.265
ODI (%)	44.6 ± 19.5	36.5 ± 19.8	0.182
Required operation	4 (9.5%)	4 (22.2%)	0.347
Effectiveness (VAS of leg pain improvement	36 (85.7%)	11 (61.1%)	0.041*
≥50%)			

Table 4 Comparison of demographic and baseline characteristics of groups S and L

Continuous data are presented as mean ± standard deviation of median [range]. Categorical data are presented as number (%). Abbreviations: S, short symptom duration; L, long symptom duration; VAS, visual analog scale; ODI, Oswestry Disability Index.

*p<0.05