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ABSTRACT: The characteristic patterns of mass spectra in imaging mass spectrometry (IMS) strongly reflect the tissue environment. 

However, the boundaries formed where different tissue environments collide have not been visually assessed. In this study, IMS and 

convolutional neural network (CNN), one of the deep learning methods, were applied to the extraction of characteristic mass spectra 

patterns from training brain regions on rodents’ brain sections. CNN produced classification models with high accuracy and low loss 

rate in any test datasets of mouse coronal sections measured by desorption electrospray ionization (DESI)-IMS, and mouse and rat 

sagittal sections by matrix-assisted laser desorption (MALDI)-IMS. Based on the extracted mass spectra pattern features, the histo-

logically plausible segmentation and classification score imaging of the brain sections were obtained. The boundary imaging gener-

ated from classification scores showed the extreme changes of mass spectra patterns between the tissue environments, with no sig-

nificant buffer zones for the intermediate state. The CNN-based analysis of IMS data is a useful tool for visually assessing the changes 

of mass spectra patterns on a tissue section, and it will contribute to a comprehensive view of the tissue environment. 

■ INTRODUCTION  

Tissues are composed of various molecules, including proteins, 

nucleic acids, and lipids, and the patterns of these components 

are a strong reflection of the tissue environment. Attempts have 

been made to understand the distribution of tissue environments, 

including comprehensive measurements of biomolecules with a 

micron-scale spatial resolution. 

Imaging mass spectrometry (IMS) is one of the most suitable 

techniques for extracting mass spectra patterns from tissue. IMS 

is a two-dimensional mass spectrometry technique that gener-

ates information on the intra- and extra-cellular spatial distribu-

tion of biomolecules [1]. In the IMS measurements with a mi-

cron-scale spatial resolution on a millimeter-scale tissue section, 

the data with biomolecule mass and spatial distribution infor-

mation is enormous. Therefore, the IMS researchers have at-

tempted dimension reduction and subsequent advanced algo-

rithms, such as clustering, to analyze the spatial distribution of 

mass spectra patterns. The autoencoder method enabled to ex-

tract the feature of mass spectra patterns and reduced the  IMS  

data into a few components that  capture the structural infor-

mation of the sample [2]. IMS data from whole-body sagittal 

sections of mice were subject to t-distributed Stochastic Neigh-

bor Embedding (t-SNE) analysis, and whole-body sections 

were segmented into different organs based on mass spectra pat-

terns [3]. Our research group reported the existence of a cluster 

segmented into white matter and gray matter in a rat brain [4]. 

Orthogonal partial least squares discriminant analysis of IMS 
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data from mouse cerebellum showed that the clusters were seg-

mented into white matter, molecular layer, granular layer, and 

Purkinje cell layer [5]. While these studies using unsupervised 

machine learning have indeed been able to classify mass spectra 

patterns using IMS data with high accuracy, the changes of 

mass spectra patterns between adjacent regions are not yet well 

understood. 

Supervised machine learning has also been employed to extract 

the mass spectra patterns from IMS data. Support vector ma-

chine (SVM) and its related methodologies were able to seg-

ment the anatomical regions on IMS data and to distinguish be-

tween different grades of glioma [6, 7]. Moreover, Behrmann’s 

group used a convolutional neural network (CNN) for the iden-

tification of lung cancer pathological type [8]. Application of 

deep neural network-based machine learning to IMS data can 

distinguish colorectal tumors from normal tissue [9]. Klein’s 

group applied the modified SVM and the CNN to determine 

histopathological types of epithelial ovarian cancer [10]. While 

these approaches can be potent applications for diagnosis and 

clustering of MSI data of normal tissues was also performed [6–

10], the boundary imaging between normal tissues has still been 

a challenging issue since in such regions cellular components 

are almost similar. To understand how tissue environments 

change, it is crucial to numerically distinguish regions with sim-

ilar components.  

In this study, CNN-based deep learning was applied to extract 

characteristic mass spectra patterns from the data of desorption 

electrospray ionization (DESI)-IMS and matrix-assisted laser 

desorption ionization (MALDI)-IMS of brain tissue sections. 

The classification scoring performed by deep learning on IMS 

data reveals an extreme change of mass spectra patterns. 

 

■ EXPERIMENTAL SECTION  

Animals. All experimental procedures were approved by the 

Ethics Committee of the Hamamatsu University School of 

Medicine (approval number: #2020027, #2017083) and carried 

out in accordance with the approved guidelines. C57BL/6 male 

mice (aged 4 months) and a Wister male rat (aged 8 weeks) 

were used for the IMS measurement (Table. S1).  

Sample preparation. Mouse brains were collected following 

cervical dislocation and decapitation, quickly frozen in pow-

dered dry ice, and stored at −80 ˚C. A rat brain was sampled 

under anesthesia using diethyl ether and then quick-frozen with 

powdered dry ice. The samples were mounted on a sample 

holder using an optimal cutting temperature compound (Sakura 

Finetek Japan, Tokyo) and sectioned with a thickness of 10 μm 

at −20 °C using a Cryostat (CM1950, Leica Microsystems K.K., 

Tokyo, Japan). For DESI-IMS, the resulting section was 

mounted onto un-coated glass slides. After cryo-section, the 

brain sections were kept at room temperature for a few minutes 

to remove extra water. For MALDI-IMS, the cryosection was 

mounted onto 100 Ω indium tin oxide (ITO)-coated glass slides 

(Matsunami Glass Industry Limited, Osaka, Japan), and 40 

mg/mL (in 50% methanol) and 610.6 mg of DHB [11] were ap-

plied as the matrix onto the mouse and rat tissue sections by 

spraying using TM-sprayer (HTX Technologies, NC, USA) at 

80 ℃, and as a 1.0-μm thick layer by sublimation using iM-

Layer (Shimadzu Corporation, Kyoto, Japan) at 180 ℃, respec-

tively. 

DESI-IMS analysis. DESI-IMS data were acquired by using 

Xevo G2-XS quadrupole time-of-flight (Q-TOF) mass spec-

trometer (Waters, Milford, MA, USA) equipped with a 2D 

DESI source in negative ion mode following previously de-

scribed method with slight modification [12]. Prior to measure-

ment, DESI-IMS mass spectra were calibrated using 500 µM 

sodium formate solution prepared in 90% 2-propanol. As spray 

solvent, 98% methanol was delivered at a flow rate of 3 µL/min 

using ACQUITY UPLC binary solvent manager (Waters, Mil-

ford, MA, USA). Optimization of DESI source for better ioni-

zation and a stable signal from tissue samples was confirmed 

prior to measurement using the following parameters: capillary 

voltage, 4.0 kV; cone voltage, 50 eV; source temperature, 

120 ℃; nebulizing nitrogen gas pressure, 4.0 bar; spatial reso-

lution, 50 μm; incidence angle of the sprayer, 75 degrees; inlet 

to sprayer distance, about 7 mm; sample to sprayer distance, 

about 1.5 mm; scan speed, 200 μm/sec, m/z range: 100 –1000 

and mass window of 0.02 Da. 

MALDI-IMS analysis. Mouse and rat brain sections were sub-

jected to 7 Tesla solarix XR, Fourier-transform ion cyclotron 

resonance mass spectrometer (FT-ICR-IMS, Bruker Daltonics, 

Billerica, MA, USA) with m/z ranges of 600–1100 and 650–

1150, laser shot count at 200 and 500, time of flight to 0.7 ms 

and 1.0 ms, and laser power of 50% and 75%, respectively. Fre-

quency at 2000 Hz, laser spot raster at 50 μm, the laser diameter 

value of approximately 25 μm, and the positive mode was used. 

Sodium trifluoroacetate (TFA, [M + Na]+) was used for the ex-

ternal calibration of FT-ICR-MS [13]. 

Handling of mass spectrum data. Mass spectrum raw data of 

DESI-IMS and MALDI-IMS were converted to CSV format, in 

which intensities from the detected peaks were recorded in each 

spot (data point), using IMAGE REVEAL (version 

1.20.0.10960, Shimadzu, Kyoto, Japan), and SCiLS Lab (ver-

sion 2015b, SCiLs, Bremen, Germany), respectively. This con-

version process took about 1 hour for 18GB of raw IMS data of 

a rat brain tissue. The total numbers of spots and the detected 

peaks were listed in Table S1. To reduce the data volume, the 

top 100 or 300 peaks with the highest intensity in each spot were 

selected and integrated, which resulted in a net 2,000 to 3,000 

peaks, similar to the pixel number of pictures in image recogni-

tion with deep learning (Figure. S1). Three or nine brain regions 

were anatomically defined as labels for supervised learning as 

follows; basal nucleus, cerebellum, corpus callosum, cortex, 

hippocampus, hypothalamus, brainstem, midbrain, thalamus 

(Table. S2). From each of the defined regions, 100 spots were 

randomly selected as a test data set, and the other spots in the 

defined region were used as a training data set. The spots in un-

defined regions were used for the classification by the trained 

model. These post-conversion processes took 21 hours, and the 

training and test data sets resulted in 135MB and 6.3MB, re-

spectively, in the case of a rat brain tissue. For dimension re-

duction analysis using those data sets, principal component 

analysis (PCA) and t-SNE were conducted by calculating eigen-

vectors and by using the R package, Rtsne, respectively. Both 

of them were completed within 30 min. 

Deep learning. CNN was applied to the learning of peak pat-

terns. The peak intensities were converted to a 46 x 46 or 54 x 

54 matrix in the order of m/z increasing. When the number of 

matrix elements exceeds the number of peaks, lacking elements 

were filled with zero value to handle mass spectrum data as in 
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the case of image data. Deep learning was conducted using 

Chainer frameworks based on Python (Preferred Networks, ver-

sion 1.19). ResNet with 101 layers was applied to our model 

[14, 15], and Adam was used as an optimizer [16]. Based on the 

spots’ numbers, the weight decay value and batch size for each 

sample varied in the range of 0.0001 to 0.02 and 70 to 140, re-

spectively (Table. S1). Finally, CNN returns a classification 

score for each brain region from that matrix. A classification 

score for a brain region (i) was defined as a probability score 

(pi), which was calculated in the CNN final layer as the follow-

ing formula: 

pi = exp(yi) / ∑ exp𝐶
𝑗=𝑖 (yj) 

The feature value (yi) was from the second layer in CNN from 

the end. C is the number of brain regions used for the training. 

In the case of a rat brain tissue, deep learning and imaging took 

17 and 9 hours, respectively. In the end, the conversion-to-im-

aging analysis was completed about 27 hours. The performance 

of the analysis machine was as follows: GPU, 

NVIDIA TITAN X 12GB GDDR5X; CPU, Intel Xeon E5-

2603v4 1.7GHz with 6 Cores; and Memory, 64GB (16GB 

DDR4-2400x4). Up to 95% of GPU memory was used during 

deep learning. 

 

■ RESULTS 

Scheme of feature extraction, segmentation, and boundary 

imaging of mass spectra patterns. The mass spectrum is de-

rived from each point of the IMS data, and consists of m/z peaks 

and intensity values (Figure. 1). IMS raw data include spot co-

ordinates in addition to mass spectrum data. In our study using 

rodent brain sections, mass spectrum data were converted to the 

two-dimensional matrix of intensities in the order of m/z in-

creasing in each spot (Figure. S2). Therefore, the converted data 

can be handled like the ones of greyscale images. CNN, com-

monly used for image recognition [17], was applied for feature 

extraction of the converted mass spectrum data. In this study, 

the feature is synonymous with characteristic mass spectra pat-

terns. The features extracted from training spots were used to 

classify other tissue regions, resulting in segmentation and 

score distribution. 

 

 

 

 

 

 

 

 

 

Classification of DESI-IMS data on a brain section by CNN 

model.  

 

Figure 2. Classification of DESI-IMS data on a mouse brain section 
by CNN model. (a) A part of a brain region was assigned as ROIs (0–
2) as shown in the area surrounded by a square. Spots within an ROI 
were randomly divided into training and test data sets. One coronal 
section of mouse brain was stained with Hematoxylin and eosin 
(H&E) after the measurement of DESI-IMS. (b) PCA and t-SNE were 
used as dimensionality reduction methods to get an overview of the 
training data. (c) Accuracy and loss of CNN learning with a test data 
set. The lowest loss value of the test data set was 0.026653, shown 
by arrow (epoch = 649). The learned model at that epoch was used 
for classification. (d) Each spot was classified with the learned CNN 
model. Areas surrounded by black solid and dotted lines show the 
selected ROIs for training and test datasets, and the area corre-
sponding to the thalamus contralateral to ROI 1, respectively. (e) 
Score imaging of ROI 1 was representatively shown. (f) Histogram of 
score imaging. ROI 0: midbrain, green. ROI 1: thalamus, grey. ROI 2: 
hypothalamus, yellow. 

Figure 1. Scheme of feature extraction and classification of a brain 
section. (a) The mass spectral data acquired from each spot of the 
tissue section is converted into a matrix (tensor), like image data, 
and used for training for a convolutional neural network (CNN) 
model and classification. (b) Features of different regions of interest 
(ROIs), (i) and (ii), are extracted by a CNN. All spots are classified into 
a or b, and classification scores are calculated in each spot. Segmen-
tation, the score distribution imaging, and border/boundary imaging 
are made by converting spot coordination to pixel format. 
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A mouse brain coronal section was measured by DESI-IMS, 

which is a soft ionization method by spraying the sample with 

an electrically charged aqueous mist. Acquisition of training 

and test datasets is a crucial step of supervised machine learning. 

Three regions of interest (ROIs) were determined on a brain 

coronal section as training and tested datasets for CNN (Figure. 

2a). The ROIs were selected from the midbrain, thalamus, and 

hypothalamus referring to a mouse brain atlas [18]. A random 

selection of one hundred spots from each ROI was used as a test 

dataset, and the remaining spots within the ROIs were used for 

training (Table. S2). To know the overview of the dataset, un-

supervised machine learning was applied to the training dataset. 

Dimensional compression by PCA failed to produce the for-

mation of clusters for each ROI, while in t-SNE, clusters formed 

can be explicitly classified into the three ROIs (Figure. 2b). 

To create a versatile model of supervised machine learning us-

ing training data with ROIs 0-2, we performed CNN deep learn-

ing for 1000 epochs to estimate accuracy and loss. Here, accu-

racy refers to the ratio of correct values, and loss means a dis-

tance between the true values and the values predicted by the 

model. We generated a model from training data for each epoch 

(Figure. S3a) and evaluated the model with test data. The model 

with the lowest loss in the test was selected as the most versatile 

one here. As a result of learning and testing, it was observed 

that the convergences to accuracy = 1 with loss < 0.2 (Figure. 

2c), and the lowest loss value of the test dataset was 0.026653 

at epoch = 649 with an accuracy of 0.990. Therefore, the model 

of epoch = 649 was a highly versatile model obtained from 

CNN-based learning in this sample. We applied the CNN-based 

learned model (epoch = 649) to other areas to investigate 

whether we could obtain histologically plausible segmentations 

(Figure. 2d). Most of the spots around each ROI were classified 

into the same brain region as the ROI. In the coronal section, a 

region classified to be ROI 1 was identified on the left and right 

opposite sides of ROI 1, which corresponded to the thalamus. 

These results indicated that the segmentation of a brain section 

produced by DESI-IMS data and the CNN-based learned model 

was histologically plausible. 

The classification into three defined brain regions was qualita-

tive, and the certainty of the classification of each spot had not 

been evaluated. To evaluate the segmentation by the CNN-

based learned model numerically, we used the classification 

scores, which were defined as probability scores of the deter-

mined brain regions calculated at the final CNN layer. The clas-

sification scores are numerical values from 0 to 1. One value is 

assigned to one brain region, and the sum of these scores is 1 in 

each spot. The distribution and histogram of the scores revealed 

a bimodal distribution with high (0.9 ≤) or almost zero scores 

for the classified brain regions (Figure. 2e, 2f, and S4a). Similar 

results were obtained from DESI-IMS measurements on a serial 

section of the section used in this experiment (Figure. S3b, S4b, 

S5). These results indicated that the IMS data were classified 

into brain regions with high certainty in the DESI-IMS analysis 

by the CNN-learned model. 

 

Classification of MALD-IMS data on a brain section by 

CNN model. We investigated whether our CNN-based analysis 

of IMS data was a useful tool to segmentate normal brain re-

gions even for data obtained by another principle for producing 

ions. A mouse brain sagittal section was measured by MALDI-

IMS, which was irradiated with a pulsed laser beam. Three 

ROIs were determined from basal nuclei, thalamus, and hypo-

thalamus on a brain sagittal section as CNN training and test 

datasets (Figure. 3a). 

 

As in the DESI-IMS analysis, training and test data sets were 

determined from each ROI. Dimensional compression by PCA 

failed to produce the formation of clusters for each ROI. In the 

Figure 3. Classification of MALDI-IMS data on a mouse brain section 
by CNN model. (a) A part of a brain region was assigned as ROIs (3–
5) as shown in the area surrounded by a square. Spots within an ROI 
were randomly divided into training and test data sets. A mouse 
brain sagittal section was stained with H&E after the measurement 
of MALDI-IMS. (b) PCA and t-SNE were used as dimensionality re-
duction methods to get an overview of the training data. (c) Accu-
racy and loss of CNN learning with a test data set. The lowest loss 
value of the test data set was 0.060882, shown by arrow (epoch = 
809). (d) Each spot was classified with the learned CNN model. Areas 
surrounded by black solid lines show the selected ROIs for training 
and test datasets. (e) Score imaging of ROI 5 was representatively 
shown. (f) Histogram of score imaging. ROI 3: basal nuclei, lime. ROI 
4: thalamus, grey. ROI 5: hypothalamus, yellow. 



5 

 

t-SNE, each ROI roughly formed clusters, but with some ROIs 

overlapping one another (Figure. 3b).  

We conducted CNN deep learning using the training and test 

datasets. As in the case of DESI-IMS, it was observed that the 

convergences to accuracy = 1 with loss < 0.2 (Figure. 3c), and 

the lowest loss value of the test dataset was 0.060882 at epoch 

= 809, in which accuracy was 0.977. We applied the CNN-

based learned model (epoch = 809) to other areas (Figure. 3d). 

Most of the spots around each ROI were classified into the same 

brain region as the ROI, and the segmentation of a brain section 

produced by MALDI-IMS data was histologically plausible. 

The distribution and histogram of the scores revealed a bimodal 

distribution with high (0.9 ≤) or almost zero scores for the clas-

sified brain regions (Figure. 3e, 3f, and S4c). As in the DESI-

IMS analysis, the IMS data were classified into brain regions 

with high certainty in the MALDI-IMS analysis by the CNN-

learned model. 

 

Classification of MALD-IMS data on a whole-brain section 

by CNN model. We tried to conduct a CNN-based analysis of 

IMS data by increasing the target brain regions. A rat whole 

brain sagittal section was measured by MALDI-IMS. Nine 

ROIs were determined from basal nuclei, cerebellum, corpus 

callosum, cerebral cortex, hippocampus, hypothalamus, pons, 

midbrain, and thalamus as CNN training and test datasets refer-

ring to a rat brain atlas (Figure. 4a) [19]. In the PCA method, 

there were considerable overlaps among the ROIs, while in t-

SNE, the number of overlaps between ROIs decreased com-

pared with PCA. In particular, the overlaps of ROI 1 (cerebel-

lum) with other regions, which were noticeable in PCA, were 

reduced in t-SNE (Figure. 4b). However, the partial overlaps 

between ROI 5 (hypothalamus) and other ROIs, between ROIs 

3 and 4 (cortex and hippocampus), and between ROIs 6 and 7 

(brainstem and midbrain) were observed in both PCA and t-

SNE. 

We conducted CNN deep learning using the training and test 

datasets from nine ROIs. It was observed that the convergences 

to accuracy = 1 with loss < 0.001 (Figure. 4c), and the lowest 

loss value of the test dataset was 0.001052 at epoch = 970, in 

which accuracy was 1.000. We applied the CNN-based learned 

model (epoch = 970) to the whole tissue section (Figure. 4d). 

Most of the spots around each ROI were classified into the same 

brain region as the ROI, and the segmentation of a whole-brain 

section was histologically plausible. 

The distribution and histogram of the scores revealed a bimodal 

distribution with high (0.9 ≤) or almost zero scores for the clas-

sified brain regions (Figure. 4e, 4f, and S4d). This result showed 

that the IMS data were classified even on a whole-brain section 

with high certainty by the CNN-learned model. 

From Figure. 4, we can see the regions segmented by the CNN-

based learned model had clear boundaries, and to further sub-

stantiate this point, we selected the highest scores among the 

brain regions identified at each spot and integrated the highest 

score into a single image (Figure. S6). In any of the three meas-

urements of DESI-IMS and MALDI-IMS, there was no buffer 

zone among brain regions where the highest score gradually de-

creased with intermediate scores (0.5-0.7) toward adjacent 

brain regions, and the intermediate scores were mainly ob-

served as thin lines separating the brain regions (Figure. S6b–

S6d). The plots of classification scores across the borders 

showed extreme changes between the ROIs. These results indi-

cated that the CNN-based learned model segmented the brain 

regions with clear boundaries. 

 

 

■ DISCUSSION 

This research displays a deep neural network-based approach 

capable of showing extreme changes in mass spectra patterns 

between the tissue environments. We have measured on various 

IMS brain datasets and our results fully demonstrate the ad-

vantages of employing CNNs.  

Higher spatial and mass resolutions are being implemented in 

IMS analysis, and at the same time, huge amounts of data are 

being produced. The challenge is how to utilize the ever-in-

creasing amount of data [20]. The mass spectrum acquired for 

each spot in IMS is a compilation of features [21], but these 

features do not provide us with direct access to the regional clas-

sification information of the sample. It is too difficult to classify 

Figure 4. Classification of MALDI-IMS data on a rat brain section by 
CNN model. (a) A rat brain sagittal section was measured for MALDI-
IMS. A part of a brain region was assigned as ROIs (6–14). Spots 
within an ROI were randomly divided into training and test data 
sets. An unstained tissue picture was shown. (b) PCA and t-SNE were 
used as dimensionality reduction methods to get an overview of the 
training data. (c) Accuracy and loss of CNN learning with a test data 
set. The lowest loss value of the test data set was 0.001052, shown 
by arrow (epoch = 970). (d) Each spot was classified with the learned 
CNN model. Areas surrounded by black solid lines show the selected 
ROIs for training and test datasets. (e) Score imaging of ROI10 was 
representatively shown. (f) Histogram of score imaging. ROI 6: basal 
nuclei, lime. ROI 7: cerebellum, blue. ROI 8: corpus callosum, green. 
ROI 9: cerebral cortex, maroon. ROI 10: hippocampus, olive. ROI 11: 
hypothalamus, yellow. ROI 12: pons, red. ROI 13: midbrain, purple. 
ROI 14: thalamus, grey. 
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brain regions simply by staring at the mass spectrum of spots in 

the ROI (Figure. S7). Compared to conventional IMS analysis, 

in which the data are manually handled, deep learning methods, 

such as CNN, enable us to extract features for large-scale data 

analysis. Feature extraction is automatically performed by tar-

geting complex spectral patterns without the need for research-

ers to worry about selecting biased target ions and without the 

hassle of selecting from a vast amount of data.  

Multivariate analysis, including supervised and unsupervised 

methods, commits to identifying available complex spectrum 

patterns. In this study, we used CNN to extract the features of 

mass spectra patterns for the classification of brain regions and 

also employed PCA and t-SNE to get an overview of the se-

lected data set with dimensional compression before conducting 

CNN. t-SNE outperformed PCA with less overlap in the classi-

fied areas. t-SNE features a non-linear function and a robust 

ability to process outliers [22], making it among the best dimen-

sion reduction methods and constituting a reason for better per-

formance than PCA analysis. These two algorithms don't ex-

tract mass spectra patterns automatically but are easy to intro-

duce compared with the deep learning supervised method be-

cause of the relatively low calculation cost. If clusters do not 

form at all even after dimensional compression, then we have 

the opportunity to reconsider any issues with the way the data 

set is taken or measured. It would be better to apply unsuper-

vised machine learning in order to grasp the IMS data. 

When comparing our method to other clustering methods that 

deal with mass spectral patterns, we need to do a trade-off be-

tween time and expense cost versus “deep” analysis. IMS data 

is multi-dimensional, and with the application of IMS tech-

niques to biological materials, the IMS data contains thousands 

to tens of thousands of peaks in a single irradiation point, in-

cluding peaks that are difficult to determine whether they are 

noise or not. When extracting a characteristic mass spectral pat-

tern, it is up to the purpose how "deep" to incorporate these 

peaks. In the case of comparing tissues with similar cellular 

components, such as our subject, deep learning would be of 

high value since it offers a high degree of freedom to design 

parameters and algorithms and enables more flexible feature ex-

traction, resulting in potentially extracting features "deeper" 

than conventional clustering methods. 

We conducted sample preparations and IMS measurements un-

der the various conditions: coronal and sagittal sections; auto 

spray and sublimation of matrix; mouse and rat; and DESI and 

MALDI, and similar results were obtained. Although we will 

need to test more conditions, our analysis method shows a cer-

tain degree of robustness that suggests its universal utility. On 

the other hand, the m/z range and pitch size may still need to be 

validated. In this experiment, IMS measurements were per-

formed in the m/z range suitable for lipid detection, as the brain 

is rich in lipids. The pitch size was determined by the perfor-

mance of the IMS device and the physical memory required for 

deep learning (VRAM 12GB). The m/z range and pitch size 

would need to be adjusted accordingly to the researcher's objec-

tives and the facility's environment. 

Although 2000–3000 peaks were selected for the deep learning, 

the presence of adduct ions and isotopic peaks must be taken 

into account, so that several hundred molecular species may 

contribute to the feature extraction. We performed no correc-

tions for the mass shift between spots in this study for feature 

extraction. One advantage of CNN-based deep learning of IMS 

data would be that it does not need to consider exact mass ac-

curacy between spots. Image recognition is an area where CNN-

based deep learning is in active use [17]. The mass shift be-

tween the spots on IMS data corresponds to the spatial shift of 

pixels on image data. Even if mass shifts are observed between 

spots, they will be automatically adjusted during the CNN pro-

cess, in which many parameters are used for weighting and con-

traction of information, resulting in tolerance to mass shift in 

the same way as it allows in deep learning for the spatial posi-

tion and shape of objects on image data. Also, the selection of 

ROI is determined by the different histological area sizes of the 

regions of the brain. If we make a similar selection of ROI size 

for the purpose of balance, we need to scale down data size by 

the smallest region, ROI 8. Smaller sizes of ROI become lower 

representatives for the whole region, which may cause diffi-

culty for CNN to learn and extract the feature from large regions, 

while there may be cases where it is better to balance ROI sizes, 

especially when all tissue areas are similar in size. A method in 

which a small number of spots are randomly selected as a data 

set, even over a large area, could be considered, but scattered 

spots make it difficult to evaluate them as imaging. 

Our method, which allows visual assessment of mass spectra 

patterns on a tissue section, helps to understand changes in the 

tissue environment. For example, metaplasia, a transformation 

of one differentiated cell type to another differentiated cell type, 

is caused by some sort of abnormal stimulus. Recently, it has 

been theorized that metaplasia may be caused by the migration 

of a cell population from a distant tissue region [23]. If an inter-

mediate state region is determined by the mass spectra pattern, 

it would be caused by a stimulus, not migration. On the other 

hand, there may be a demand to know the profile of the molec-

ular species that contribute to the extracted features. It is a hot 

topic in the field of deep learning research to express the ex-

tracted feature in a way that researchers can understand [24]. 

Saliency mapping is one of the methods [25, 26]. In the future, 

such a method will be a bridge between deep learning and mo-

lecular biology. 
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