20. 医療・計測用微小光ファイバプローブにおけるレ ーザ光の近接界特性

宮崎保光 (愛知工科大学)

レーザ光の位相特性の特徴であるコヒーレント特性を活 かした光学治療微小光プローブはこれまで各種多く試みら れている。また、サブミクロンあるいはナノメートル領域 の計測・治療に有効と思われるテーパ状の微小ファイバプ ローブの検討も進められている。 光波長は、紫外光から 可視光、近赤外光の場合には、200nmから 1000nm=1µm となり、光エネルギーレベルは 1eV から 5eV の範囲にあ り計測、治療において生体との物理化学反応を考慮して微 小領域への種々の応用が考えられる。テーパ状の微小ファ イバプローブの先端が波長以下のサブミクロンになった 場合、コア領域における光波はクラッド領域の調節によ り、カットオフに近いリーキー波現象となり、ファイバプ ローブ先端では極めて微小な空間のみに関した近接界特性 となる。極めて微小なサブミクロンあるいはナノメートル サイズの生体領域の治療、計測にテーパ状ファイバプロー ブは有効と思われる。ここでは、電磁界の解析法および、 FEM、ビーム伝搬法の数値計算シミュレーションにより、 微小光ファイバプローブの近接界特性を示す。長さ 10µm ~ 100µm のファイバプローブの先端が 1µm から 0.1µm のコア領域である場合におけるレーザ光の近接界の強さお よび、微小試料が存在するときの界分布を示している。

21. α線による泡核の発生に関する研究

村林甲介,長谷川武夫,長塚 悟,伊田和司,天野守計, 前田佳代子,福山篤司,安藤聡志,小野博史,大野由紀子, 鈴木友昭(鈴鹿医療科学大学大学院保健衛生学研究科)

はじめに。α線は電離脳が大きい等の理由により生体に 対する影響は大きいとされている。しかし、我々はその他 の理由としてα線により物質内に泡核が発生し、この泡核 が関与していると考えた。原理。α線が標的核との衝突に よって局所的な原子の振動が起こり、その結果、原子の爆 発的な気化が起こる。そしてその泡核が液体または石鹸泡 膜内に発生するという考えが泡核原理である。泡核が発生 するために必要なエネルギーは、泡核の表面張力、気化熱、 内圧力の3項目が関与すると考えられる。さらに、ラザ フォード散乱を用いると泡核の大きさを求めることができ る。実験。石鹸の泡にα線を照射した。結果。石鹸泡はα 線の飛程に沿って崩壊した。このことから泡膜内に泡核が 発生していると考えられる。まとめ。 α 粒子により石鹸泡 を崩壊させるために必要な、約 5MeV の散乱によって発生 する泡核の大きさは理論的には約 1200 ~ 1500 Åである と推測される。

22. 磁気併用 EIT の 3 次元化の検討

田口裕一¹,中野直樹¹,木下博人¹,竹前 忠¹,小杉幸 夫²,西澤茂³,横山徹夫³,難波宏樹³(¹静岡大学工学部, 2 東京工業大学総合理工研究科, 3 浜松医科大学脳外科)

本報告では、我々が別途提案した磁気を併用した電気イ ンピーダンス CT の3次元化に向けた測定システムを検討 した。この方法では、測定部位を横方向に等分割でセグメ ント化することにより、1 次元コンダクタンス分布が得ら れる。また、2次元コンダクタンス分布は、各測定方向の 1次元コンダクタンス分布から逆投影法によって得られる。 更に本法では、測定部位を上下させることにより3次元方 向の情報が得られる。測定部位の間隔を狭くすれば3次元 方向の解像度は高くなるが、1次元コンダクタンス分布の 精度は落ちてしまう。そこで、測定部位が重なるようにず らしながら測定していく方法を行った。既知で一様な部分 から測定を開始して、測定部位をずらしていきながら未知 の部分のコンダクタンスを計算して求めていく。このよう に各測定部位の測定結果から測定部位より狭い間隔の情報 が得られるような方法で測定を行い検討した結果、測定部 位の間隔を狭くしなくても、高い解像度が得られることを 確認した。

23. 放射線治療における組織内酸素分圧測定の有用性 伊田和司,天野守計,門前一,前田佳予子,福山篤司, 安藤聡志,小野博史,大野由紀子,鈴木友昭,村林甲介, 長谷川武夫(鈴鹿医療科学大学大学院保健衛生学研究科)

本研究では、放射線治療における金線 PO₂ センサと血球 作用物質(Pentoxifylline)を用いた組織内酸素分圧測定 の有効性を検討した。実験方法は、脱気水中の金線 PO₂ セ ンサに電圧を印加し、センサ間に流れる電流と酸素分圧と の関係を測定した。次に、C3H マウスの腫瘍細胞(Fsall) と正常細胞に Pentoxifylline を投与し、酸素分圧と放射線 照射後の腫瘍の変化を測定した。結果は、金線 PO₂ セン サの印加電圧が-0.6[V]付近で出力電流が平坦(プラト ー)になっており、安定して測定を行え、酸素分圧とセン サ間に流れる電流には、比例関係が成り立っていた。また、 Pentoxifylline の投与で酸素分圧の変化は見られなかった が、腫瘍細胞の酸素分圧は上がり腫瘍への放射線増感効果 が見られた。以上のことから、金線 PO₂ センサでの酸素分 圧の測定は放射線治療効果を予測する上で有効であると考 えられる。

24. 頭部インピーダンス計測における頭皮血流の影響

西沢 茂¹,横山徹夫¹,難波宏樹¹,坪井直之²,波多野 逸郎²,平松優和²,竹前 忠²,小杉幸夫³(¹浜松医科大 学脳神経外科,²静岡大学大学院理工学研究科,³東京工業 大学大学院総合理工学研究科)

本研究は、電気併用四電極法を応用した、頭部の電気イ ンピーダンス測定方法を用いて、頭部の電気インピーダン ス変化およびその脈波成分を測定し、頭皮血流の影響につ いて観察した。脈波は頭皮 24 箇所で測定した。頭皮血流 を遮断した状態としない状態では観察された脈波の振幅や 形に違いが観察された。この違いは、遮断なしの状態では、 真の脈波の情報に頭皮血流の情報が含まれているために生 じたと考えられる。電気インピーダンス変化は過呼吸の呼 吸止め時において変化を測定した。頭皮血流を遮断した場 (518)

合,呼吸止め開始から徐々に電気インピーダンスは減少した。これは呼吸止めによる CO₂ 分圧の増加に伴う血管拡張によって生じる電気インピーダンスの減少と考えられる。これに対し、遮断しない場合,電気インピーダンスの減少がほとんど観察されなかった。これは頭皮血流の影響によるものと考えられる。

25. 動作生成と組織変形を同時にシミュレートできる 人体モデルの開発

稲葉 洋¹, 宮崎慎也², 長谷川純一²(¹ 中京大学大学院 情報科学研究科,² 中京大学情報科学部)

筆者らは、動作の生成およびそれに伴う組織の形状変化 を同時に実現する人体モデルを構築し、これを利用したシ ミュレーション環境の実現を目指している。インフォーム ドコンセントへの利用を想定したこのような環境では、結 果を視覚的に理解しやすい形で示すことが重要と考えら れ、また、その処理は実時間性を持つことが望ましい。こ こで、人体組織の変形は弾性体の衝突や干渉を伴う変形と 考えられる。しかし、計算機によるこれら判定は、一般に 膨大な計算時間が必要とされ、シミュレーションにおける 実時間性は失われる。そこで、本研究では、組織間の形状 的な隣接関係をあらかじめ定義することによって、衝突や 干渉計算を必要としない高速な変形シミュレーションを実 現する。実験では、人体下肢に本手法を適用し、動作の生 成および組織の変形を確認した。

26. 前立腺仮想針生検による穿刺条件の評価

出口大輔¹,目加田慶人¹,森 健策¹,村瀬 洋¹,長谷 川純一²,鳥脇純一郎²,野口正典³(¹名古屋大学大学院情 報科学研究科,²中京大学情報科学部,³久留米大学医学部) 前立腺がん検診では,がんの有無を確定するために,生 検針により前立腺の組織を採取し,顕微鏡で確認する前立 腺針生検が行われる。ここでの生検条件を組織的かつ定量 的に評価するために,実際の前立腺病変の発生分布を取り 入れて作成された仮想前立腺と,それに対して本数,配置 法など様々な条件で仮想的に針生検をおこなうことができ るシステムによる,前立腺針穿刺法の評価実験に関して報 告する。実験の結果,病変を採取する確率の高い条件と採 取される病変の体積が大きくなる条件が一致しないという 知見を得た。

27.3 次元 X 線 CT 像からの歯槽骨吸収の定量化に関 する予備的検討

北坂孝幸¹,長尾慈郎¹,林雄一郎²,森 健策¹,末永康仁¹, 山田章三³,内藤宗孝⁴(¹名古屋大学大学院情報科学研究科, ²名古屋大学大学院工学研究科,³愛知学院大学歯学部歯周 病学講座,⁴愛知学院大学歯学部歯科放射線学講座)

歯周病はプラークの起炎作用で生じ、歯槽骨等が吸収される(溶ける)疾患である。そのため歯周病の診査では、 骨の吸収の度合いを測定することが重要である。しかし、 プロービングや X 線像診査といったこれまでの診査方法で は、吸収領域の 3 次元的な広がりを評価することは困難で あった。そこで本稿では、3 次元 X 線 CT 像を用いて、吸 収の 3 次元的な広がりを定量的に評価する手法について基 礎的検討を行う。具体的には、まず歯槽骨やセメント質、 エナメル質などの領域を事前に半自動的に抽出し、得られ た領域を基に吸収領域を抽出する。そして、歯の慣性主軸 方向に沿って吸収領域の深さを測定する。この測定値から 平均深さやその分散、最大深さ等の評価値を算出し、骨吸 収の定量化を図る。本手法を 3 次元 X 線 CT 像 1 例に適用 した結果、定量的な測定が可能であり、骨吸収の定量化の 可能性を示唆された。

28. 低侵襲遠隔マイクロサージェリシステムの研究 生田幸士,山本圭一,佐々木啓次,井上 聡(名古屋大 学大学院工学研究科)

本研究では,現在の低侵襲手術で困難とされる「深部か つ狭所空間における微細手術」を可能にする手術方式と手 術ツール双方の提案と開発を行う。本報では手術ツールと なるマイクロフィンガーの開発について報告する。本シス テムは,7自由度を持ち,微細作業を行うスレーブマニピュ レータ(外径3mm)とアクチュエータをユニット化した駆 動部,そして医師が操作を行うマスタで構成されている。 駆動部は小型軽量であるため,手術室においても複数のロ ボットを協調して使用することが可能である。また,駆動 部は体外に配置し,マニピュレータはワイヤを用いて駆動 させるため,漏電の心配もなく,安全面においても優れた システムとなっている。医師の操作するマスタは鉗子の形 状をしており,腹腔鏡下手術を行っている感覚で微細作業 が行える。このシステムにより,鳥の肝臓を用いた縫合動 作を実現した。また臓器裏側からの刺入動作についても容 易に可能であった。

29. 遠隔腹腔内手術用ハイパーフィンガーの開発

生田幸士,河合正也,福田桂一郎,長谷川貴彦(名古屋 大学大学院工学研究科)

低侵襲手術の高度化はメカトロニクスを基礎とする先端 医療工学の中心的課題とも言える。なかでも,腹腔内手術 の手術ツールの開発には大きな期待が寄せられている。筆 者らは,深部臓器への手術に適用可能な,より高度かつ広 範囲な腹腔内手術の実現を目指してハイパーフィンガー(超冗長多自由度鉗子)の開発を行ってきた。本報では,小 型回転付把持機構や新たな着脱機構を導入した3号機を製 作し,双腕用マスタにより,双腕ハイパーフィンガーを実 現した。また,動物実験を行い,複数のハイパーフィンガ ーによる協調作業によって,飛躍的に高度な作業が可能で あることを実証した。本研究チームが提案するハイパーフ ィンガーが完成することによって,現在の手術ツールでは 困難であった領域や症例への腹腔内手術の適用や,新たな 手術法の開発も期待される。