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We have proposed an H2 control principle for evaluating the noise filtering function of the
Calcium ion channel on the excitable biological membrane. The multi phase channel properties
were characterized by four identical subunits. Each subunit has a voltage sensitive molecule which
acts asa gating regulator for channel opening and closing. By applying the H2 control theory, we
obtained matrix differential equations including the observer and estimator and two Riccati
equations for the observer and state. They minimized the 2 norm of the transfer function from the
noise to the out put signal. The concentrations of any channel species per unit membrane area were
significantly smoothed under the H2 control. The changes in weighting coefficients induced
definite changes in the temporal changes in the species.
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1. Introduction.

Calcium ionic flow into cellular space is gated by
Calcium ion specific channel. (Fig 1). It is composed of
four identical subunits of protein helix. Each subunit is
further consisted of six  substructures, s1 ,s2,83,s4,85
and s6. s5 and s6 locate at the inner most part which face
to the channel pore. s1 ,52,s3 and s4 locate outer region of
the subunit group. Among these six subunits, s4 has the

highest sensitivity to the electrical membrane potential gap
across the cell ( Fig 2 ). It behaves as a voltage sensor to
coordinate dynamical positional changes of the subunits.
This regulates the opening and closing the channel pore.
For gating the calcium ions, there are alot of bio
physical molecules that compete the binding sites with
calcium jons. Since they are non specific, they can be
regarded as white Gausian noises. The calcium ion
channel must filter these noises. Hence, the channel can
be interpreted as H2 controller. In the present work, we
introduce a method for modeling state tramsitions of Ca
channel conformation and solving the H2 problem.
2. Modeling of the system.
Fig 3 shows the transitional positional changes of the
voltage sensor s4 molecule denoted by +. Since there are
four subunits, there are four possible configurations of
the positionings of the s4. When two s2 molecules took
the activated positions, there are six possible positions.
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3. Mathematical description and H2 control.
In this section, we denote the amounts of closed
and open channel states per unit membrane area by
Cn and On. ndenotes the number of the voltage
sensor molecules that have taken the activating
positions in the corresponding subunits. The temporal
behaviors of calcium channel state is expressed

by
dC/ot= kcCi+kL /f Oo-( 4kec+ kL f)
Co +pouz+prlut 0 emeeemeeen 6))

0Ci/gt=4kcCo+2k-cC2+k-L/f O1-(k-c+3ke
+kL )Ci +piui+pious+p2ut
0C2/dt=3kcC1+3k-cC3+k-L/f202-(2k-c+2ke
+kL £2)C2 +prurdpr’uz+pdur eeeeeeeee 3)
9 C3/ 9 t =2kc C2+4 k-¢ C4 +k-L /£ 03 - (3 k-¢ + ke
+kL f )C3+ psur+pilus+psur  em-emeee 4)
dC4dt=kcC3+k-L 04 - (4kctkr )C4
+  paut+pwuz eeeeeeeen (%)
000/gt= fkrCo+k-c fO1-( kL /£
+4ke/f))00 + pous+psuz  ---e-ee- 6)
001/ Jdt=4kc/fO0+KkLf C1+2k-c f*O2--nmm- —(7)
-(kcf+kL/P+3ke/f?)01+pous+ps uz
002/ dt=3ke/fO1+kL £ C2+3k-cf 03---—(8)
(2f k-ct+k-L/f2+2ke/f)02+prius+p7u2
903/ dt=2ke/f O2+kLfCi+4dk-c f 04--—9)
-(3kc P+k-L/f+kec/f)03+p7uz+przus+ps uz
004/ dt=ke/fPO3+kL C4 -(4kcf + kL )
O4 +psuz+pisuz - (10)
where  u1 is the control input acting on an individual
transition from the closed state Co to Cs. The effect
of w is to convert the spatial position of an inactive
voltage sensor from its resting to the activating position
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Schema 1. Transition diagram for closed and open channel
conformations.
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Schema 1. Associated diagram of the channel state trammition.

within the subunit. pi,p2ps and ps are the weighting
cocfficients to measure the relative amount of ul
operating on the transitions of C0 - Cl, Cl1-2C2,
C2-> C3 and C3-> C4 respectively.  p«,p7,p2 and
pr are those from Cs state to Co state. u2 is the same
control input as uir but operates on an individual
transition from the open state Oo to O4. ps, pé,p7 and
ps are the weighting coefficients that determine the relative
strength of w2 acting on the transitions of OO0
-2 01, O1 -2 02, 022 03 and 03 -2 04
respectively.  ps’,ps,p7 and ps’ are those from O state to
Qo state. us3 is the control input acting for transitions from
a closed to an open state. p9,pio,p11,p12z and pi13 are the
weighting coefficients to characterize the relative
magnitude of us  working on the transitions of CO-->
00, C1 -2 01, C2-» 02, C3-> 03 and C4 --- 04
respectively.  p9 topi3are those from the opens states
to closed state. Vector form of the state equation is
given by

xX'()/ot=Ax+Blw+B2u
Where u is the control input, w is noise. 1 supposed
that the noise acts on an entire state variables. Vector
form of the equation for the controlled output z is

z=Cl1x+D12u
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Vector form of the equation for the input
y to anobserver is given by
y=C2x+D21w

For simplicity, all the elements in Bi, B2 and D21
were set to unity. The elements in C1, D12 and C2 were
expressed by non dimensional weighting parameters qi to
q9, q10 to q12 and s1 to  s9 respectively. Elements q1 to g9
in the matrix C1 signify relative weights of the state
variables on the controlled out put z. quo to qi2 in the
matrix D12 signify relative weights of the control input
on the out put z. s1tos9 in Cz signify those of the
state variables on the input for observery. The vector
form of the optimized control u” is given [S]by the
product of matrices B2, Xand x*
ur= -B2” X x*
is the state vector of the observers and T
denotes transpose.
xAT = [ x10, X11, X12, X13, X14, X15, X16, X17, X18 ] T----- (15)
which correspond to state variables. X is the
solution of related algebraic Riccati  equation [

ATX +XA-XB2B2"X+Ci1TC1=0 (16)
The vector  equation of
by ,

ox"Igt=Ax"+B2u+YC2"(y~C2x")-(17)
where Y is the solution of adjoint algebraic  Riccati
equation ) T
AY+YAT-YC2"™ C2Y+B1B17=0 -(18)
To close the feed back loop, y can be related to
state variable x by
y=xd-C2x
we set xd =0.

where x*

observer x* is given

for simplicity.
present system  is

The plant of the

A | B1 B2
G=  —ccme- S —
cCi | 0 D12
C2 | D21 o (20)
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4. Results.

Fig 4 compares the temporal changes in concentrations (
amounts or number of channel state per unit membrane area
) between those under the H2 controlled conditions and
non H2 control for open ( left ) and closed ( right )
states. Note the difference of the order of the APPENDIX 2. Elelements in the Matrixes
concentrations of the species. The changes in H2

equations.
controlled species were significantly reduced. A=[all al2 al3 al4 al5 al6 al7 al8  al9
Fig 5 shows the concentration of C1 and C4 species
under the H2 control when weighting coefficient pn for a2l a22 a23 0 0 0 0 0 a29
the control inputs un were reduced to 0.00001. We can 0 a32 a33 a34 o0 0 0 a38

observe definite oscillative changes in concentrations of
species that correspond to reduction of pn. Fig 6 shows
those for the open species O1 and O4. There were
similar changes. Fig 7 shows those when the weighting
coefficients qn in  the matrix C1 were reduced to
0.00001. We could observe small but definite changes in
the time courses of the both open species.

5. Discussion.

The present work has shown the method for modeling
the multi phase Calcium channel gating under the H2
control. The smoothing effect of the H2 control ( Fig4 Bl =]
) were remarkable. Changes in weighting coefficients for
the control pn and C1 revealed characteristic changes in
the concentration of the corresponding species. This in
turn indicates that when any change in time courses of
concentrations of the species could be observed, we could
speculate what kind of the weighting coefficients have
been changes. The present method when extended,
including the H infinite control, we can evaluate the noise
filtering function of the calcium channel gate.
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Then, U(s) is an inner system if and only if

D' C+ B" X =0
C2=[s1 0 O 60 0 O 0 0 0 DTD=I.
0 2 0 0 0 0 0 0 Proof. -->. Using the state-space formula
0 0 s3 0 00 0 0 O U (s) U(s) = A 0 l B
0 0 s4 00 0 0 0 CC___A% 1 -CD l
0 ) [ D'C B ' DD I-(5.15
0 0 0 0 50 0 0 0 Applying the similarity transformation
0 0 0 0 0 s6 0 0 O I 0
0 0 0 0 00 s7T 0 0 T=l % 1]
0 0 0 0 00 0 s8 0 To the realization (5.15) and using (5.13) and (5.14)
0 0 0 0 0 0 0 0 s9j; A 0 B
UrU = [XA AX - C'C -AT l -XB -C'D
D'C + B'X B ' DD
=¢A 0 B
D21=[1 0 0 0 00 0 0 0 O [O(T___l__éf\f 10]
0 1 0 0 0 0 0 0 0 0 =I
0 0 1 0 0 0 0O 0 0 O &&&&&&&EE&&&EEE&&&&EE & &&EEE&&ESE
Lemma 5.2. Given the system (5.7) denote by X=0,
00 0 100 0 0 0 0 the solution to the following algebraic
0 0 O 0 10 0O 0 0 O Riccati equation
0 0 0 0 0 1 0 0 0 0 . .QTX +thXA +h CC - fXBBTX‘ =b()l -—(@5.17) ; .
onsider the change of variable v =u =F x where
6 0 0 0 00 1 0 0 0 Feob X 518
0O 0 O 0 0 0 0O 1 0 O And let U denote the system in terms of this new
0 0 0 0 0 0 0 0 1 oJ; input vz;iablg v that is
U(s) = CF D] AF = A+ BF, CF=C +DF
Then, U is inner.
D12=[ql0 O
0 qll 0 Proof. Using the definitions of AF and CF and
the orthogonality condition CD =0
0 0 0 (5.17) is equivalent to
0 0 0 (AF — BF) X + X ( AF — BF )
0 0 0 + (CF—~ DF )T (CF —DF) — XBBX =0
Setting by
0 0 0 F=-BYX
0 0 0 (AF — BG-B") )X +X (AF - B(-B' X))
+ (CF - DF )T (CF —DF) - XBBX =0
0 0 0 Thus, we have
0 0 0 AFT X + X AF + CFT CF =0.
0 0 0 Moreovre from the definition of F, using again the
o 0 0 orthogonality condition, D'CF + B" X =0. Thus, from
0 0 ql2]; — Lemma 5.3 Consider again the feed back gain
F = - B'X and denote Gc(s) by
AF I
3333 BPEPPT3835533555555555555885% ; Ge(s) = CF 0 —-=(5.21)
P 129
Classical linear Quadratic regulator Problem. Then, U™ (s) Ge(s )¢ Rug*

Given the LTT system
ax(t)/at = A x(t) + Bu(t)
z(t) = C x(t) + Du(t) ---5.7)
with (A, B) stabilizable, ——=(5.8)
(C,A) detectable —-(5.9)

Proof. Since Gc(s) is strictly proper, we only have
to show that U'Gec is strictly antistable.
Proceeding as in Lemma 5.1

- AFT - CFT CF 0
CD=0 -—-(5.10 U Ge = ‘ 0 AF I I
DD = ---- (5.11) . B F Vo
Find an optimal control law u ? L2(0,0).
That minimizes IIzIl2%. = ~ AFT 0 - X
) ) 0 AF I I ]
Lemma 5.1. Consider the following stable system B ] 0
A IB
U(s) = [ C D ] - r.AFT X
Where the pair (A,B) is controllable. . B 0 ]; € RHY

Let X = X" =0 denotes the solution of Lyapunov equation

AX+XA+CC=0 (513 Which is antistable since AF is stable.
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5.3 The standard H2 control problem.
Fig 5.1

w=> Gl -z
u-> G oy

ué- Kis) €y

A common control problem is to synthesize a controller
that stabilizes the system and minimizes the size of the
output to a given class of input w. The LQR problem
in 5.2 is a special case where the inout is restricted to be
the form of w(t) =xo 6(t) where its is assumed that the
states are available for feed back. Leading to the
following state space realization for G(s)

A | 1 B2
GLQR = [ ct | 0 D12 ]
I 0 0 *-(5.28)
In the H2 control problem,
A | Bl B2
G= [Cl ‘ 0 D12]
C2 D21 0 feeeee (5.29)

The object is to synthesize an internally stabilizing
controller that minimizes the 2-norm of the closed loop
transfer function from w to z IITzwlIl22. Its physical
interpretation is to minimize the root mean square
(RMS) value of the output z due to a Gaussian white
noise input with unit covariance.

[ Standard H2 problem ]

< Given the plant G{s), find an internally stabilizing
proper LTI controller that minimizes IITzwlI2.
Assumptions
Al. (A,B2) is stabilizable and (C2,A) is detectable
A2. (A,B1) is stabilizable and (C1, A) is detectable
A3.C1"D12 =0 and B1 D21"=0
A4. D12 has full column rank with D12'D12 =I and
D21 has full row rank with D21D21" =0.

The assumption D11 =0 guarantees that the closed
loop transfer matrix is in H2. ( A real rational stable
transfer matrix is in H2 if and only if it is strictly
proper ).Al is necessary for the system to be stabilzable
via output feed back. Al and A2 guarantee that the
control and filtering Riccati equations associated with
the H2 problem admit positive semidefinite stabilizing
solutions. They can be relaxed to G12 and G21 not
having invariant zeros on the imaginary axis. A3 is
an orthogonality assumption. A4 is the rank
assumption which guarantees that the H2 problem is
non singular. The normalizing condition D12'D12 = |,
D21D21" =I do not entail any loss of generality since
they can be met by redefining the input w and u.

Consider the Riccat equations

AX2 + X2 A-X2B2B2' X2 + C1'C1=0 --(5.30)
AY2 + Y2AT - Y2C2'C2Y2+ B1B1T =0 —(5.31)

These equations can be associated

to the Hamiltonian matrices H2 and J2

A  -B2B2'
H2= -C1C1 -AT ----(5.32a)
J2= A" -C2'C2

-B1B1" -A  ---(5.32b)
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Under the assumptions A2 and A3, these matrices
satisfy H2, J2 € dom(Ric). This in turn implies that
5.30 abd 5.31 have unique solutions

X2 =Ric(M2) =0 and Y2=Ric (Y2) =0. These solutions
are stabilizing

A — B2B2'X2 and A — Y2C2%C2 are Hurwitz.

Theorem 5.2 Under the assumptions Al to A4. unique
optimal H2 controller is given by

[XUYKWM9= '[;%%+%1][§]n»

11 Ge(s) Bill2z + II FaGf(s) Il2

Min IT Tzw(s) II2

--(5.34)
K(s) stabilizing
Ge(s) =1 AF ‘ I : AF = A+ B2 F2
[ClF 0] : C1F = Cl + D12 F2
Gf(s) =[AL i BlL] : AL = A+ L2 C2
I 0 : BIL = Bl + L2 D21

AFL = A + B2F2 + L2 C2

F2 = - B2T X2, L2 = - Y2C2T

X2 = Ric (H2), Y2 = Ric (J2).

full information and out put estimation subproblems.

To prove this, we decompose the outiput feed back problem
into full information and output estimation sub

Problem.

5.3.1 Full Information problem.

Lemma 5.5 Consdier the FI case
A | Bl B2
G = Cl 0 D12
I 0 0y]— (5.36)

Then, the following results hold

1. The optimal H2 controller Krl = [ F2 0]

2.The corresponding optimal value of the H2 cost is
Copt =11 Tawlly = I Gc Bl I12 = trace (BITX2BI)v:
Given v> vropt, the set of all internally

3.

stabilizing controllers such that
{ K(s) : K=[F2
T1QI14, < y? - IIGcBl

[ITzwll2s 71 is
Q(s) 1, Q(s) € RHY,

Proof. As in the LQR case, define a new control input
V = u(t) - F2 x(t), obtaining

AF
Ze = CiF !
Or equivalently

[ AF}BIP

= Gels) B1 + U(s) Tvw(s) ---5.38
Which produces with Lemmas 5.2 and 5.3
HTzw(s)I2? = I1Ge(s) B1IL, + IITvw(s)IT,

B1
0

B2
D12

w(s)

v(s)

) (

). 537.

[ -------- foeenees Tvw(s)
CI1F D12

---5.39

This quantity is minimized by setting v=0 which
results in Tvw =0. This is achieved by the unique static
controller KFI =[F2 01yielding
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MinIITzw(s)II’, = IIGc(s) B1IIY, = trace (BITX2B1)w2
-5.40
Where the last equality derives from the fact that X2 is
the closed ~loop observability Gramian.
Remarks
1. The optimal controller uses only feed back from
the states. Thus under the assumption that D11 =0,
the FI and state-feed back (LQR) problems have
the same optimal solution.
%% % %% % % % %% %% %% % % % % % % % % % % % % % % %
1. Full Control Problem.
Lemma 5.6 For the full control case.
A | Bl 1 0
GFee)={C1 | 0 0 1] -5.42
C2 D21 0 0
The following properties hold
1. The optimal H2 controller is
Krc=[L2 0l
2. The corresponding optimal value of the H2 cost is
yopt =min wé L2
[1Tzw(s) 11y, = TICIGf 113, =trace (C1Y2CIT)

3. Given 7 > 7 opt, the set of all internally stabilizing

controller such that
Taw(s) I3, <7 s

{K(s) : K=[ L2 Q(s) 17 Q(s) € RH2,
[IQII, =72 — I1ICIGIII:,

48888888 LELEEEE5EEEEEEERELEEEELEEEEEELELEEE

Disturbance feed forward probiem.
Lemma 5.7 Consider the DF problem

+A__Bl. ; B2
GDF(@<Cc1 o ! D12
c2 1 0---5.43

With assumption that A— B1 C2 is stable.
The, the following properties hold
1. yopt = min [ITzwily, = 11Gc B1II3
A+ B2F2 -B1C2 ' B1
F2 0 ---5.44

3. The set of all LTI controllers such that
[1Tzwil, =< 7 is given by
K(s) = FL(JDF,QW), Q? RH2,
[1QIT:, =t — 1IGceBlIIy

Where A+ B2F2 — BIC2 , Bi B2
IDF (s) =[ F2 1o 1 J
- C2 I 0 --+—5.45

Proof. FromLemma 3. 3 that under the additional hypothesis
of stability of A-BiC2, the DF and FI problems are
equivalent, in the sense that if KFL=[F Q] stabilizes
GF1 then KDF=FL(JDF,Q) stabilizes GDF and yields the
same closed loop transfer function, FL(GFI, KFD) =
FL( GDF, KDF ). More over KDF parameterizes all the DF
stabilizing controllers. The proof follows now by
combining these facts with Lemma 5.5

As before, the solution to the OE case follows from the
duality

888888888886888888&&8&&LEEEELELEEEEE

Qutput Estimation problem

Lemma 5.8 For the OF case

A Bl B2
GOE = [CI ! 0 I l
C2 D21 0
A- B2C1 is stable - 5.46
The following properties hold
I. The optimal H2 controller is

A+ L1202 ~ B2 Cl L2 *
Kog = ! Cl 0

2. vopt = min IITzwlly = 1T CI Gf II3

2. The set of internally stabilizing controllers
such that

[ITzwll;, =7 is K(s) = FL(JOE,Q), Q RH2,
[1QIIy, S v? — TICIGIIIy,

where
A+L2C2 —B2CI 1 L2 -B2
JOE(s)=[ C1 0 I }
c2 I 0

Proof. of Theorem 5.2

Change the input variable u(t) = v({t) + F2 x(t)
This partitions the system into the two subsystems
In Fig 5.2 Where G1(s) and Gtmp(t) have
the realizations

A+ B2F2 B1 B2
Glle)= [ ;L ]
Cl1+D12F2 0 D12
rA | B1 B2
Gtmp(s) =
l -F2 ‘ 0 1
Cc2 D21 Q- 5.49

G1lis stable and Gtmp has an Output estimation form.
K(s) internally stabilizes G(s) if and only if K(s)
internally stabilizes Gtmp. From Fig 5.2

AF } B1 B2 ) w(s)]
[ v(s)

= Gels) Blw(s) + Uls) vls) -----5.50

0 D12

or
Tzw(s) = Gels) B1 + U(s) Tvw(s) —5.51
From Lemmas 5.2 and 5.3, we have

Min IITzw(s)1I22 = IIGc(s) B1IT2, + min IITvw(s)ITY,
---5.52
But since Gtmp has an Out put estimation form, from
Lemma 5.8 we have that the controller that minimizes
this last transfer function is
A+L2C2 + B2F2 ' L2

KOE(s) = [ ]
-F2 0---5.53
(in 547 KOE,set Cl=-F2)

Yielding minIITvw(s)II = IIF2 Gf(s)II%,.
It follows

MinlITzw(s) I}, = IIGe(s)B1 IIt, + II F2Gf(9)II2, --5.54

Remark.

The optimal controller (5.33) exhibits the
separation structure of the H2 problem.
This can be made apparent by rewriting
its state-space realization as

DxAe)/dt =Ax» + B2u+ L2(C2x* - y)
U=Fxx»

Thus, the output of the controller is the optimal
estimate of the LQR control action u = F2 x. Alternatively,
the separation can be seen directly from the proof of the
theorem. Because the state feed back used in obtaining
G1 corresponds to the optimal LQR state feed back, The
subsystem Gtmp leads to an optimal output estimation
problem. The optimal cost is the optimal state feed back
(LQR) cost plus the optimal filtering cost.
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