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A theoretical method was introduced to describe the bio physical reaction field around the gene
regulation protein particle, repressor. The method basis on the statistical molecular thermo
dynamical approach developed by Curtiss CF and Muckenfuss ( 1957). The system was described
by the Boltamann equation including the angular and linear velocities. The solution for the
collision integral was expressed by the series expansion of Sonine Polynomials. For the practical
use, we introduced a sphere cylinder model that mimics the slender bio molecular particle. These .
three bio physical quantities changed as functions of number density, the ratio of radius and length
of the sphero cylinder. The present method when extended will be available for evaluating the
molecular thermo dynamical behavior of the gene regulation protein particle.

Gene regulating particle. Molecular thermo dynamics. Boltzmann equation. Collision integral.
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1. Introduction.

Expression and inhibition of gene are controlled by the
protein particles that are specific for particular region of
the gene molecule. In the present paper, we introduce a
statistical . molecular thermo dynamical approach developed
by  Curtiss and  Muckenfuss (1957,58)  for the
characterization of bio physical reaction field around the
gene regulating protein particle.

2. Mathematical method.

We examine the behavior of representatxve points in a
typical volume element and calculate, using a Taylor
series expansion, the net rate at which molecules
of kind 4 join the group in the volume element in a time
interval dt. In this way we obtain

Difi=Ji=2 T4 (1.2)
7
3 o F; 3 . 9 .
Di=jita Vot gy aay 60y 09

and F; is the external force on a molecule of kind 4
whose mass is m;. The term J; is then related to the
net number of molecules of kind i which enter the
volume element resulting from collisions with mole-
cules of all other kinds.

J,','= '—‘/ (f;’f,"—fif;')k'g,-;S(k)dde,'d «;a0;). \;.'7) :

In this equation the primed velocities are functions of
the unprimed velocities through the dynamics of colli-
sions of rieid convex bodies

where g;; is the relative velocity of the points of con-
tact before the encounter,

4;i=Vi—Vit+ ;X 8j— ;X é;, (1.4)

and S(k)dk is the element of surface of the volume

from which the center of molecule 5 is excluded when

the molecules are in contact. The radius vector from

the center of a molecule to the point of contact is

denoted by ¢ and the sense of k is taken from molecule

i to molecule 7. :
3. SOLUTION OF THE BOLTZMANN EQUATIONS

The equilibrium solutions for the Boltzmann equa-
tions are

f.ozm*miir'je (_miviz_gi'li‘gi) 31
YT k) CP\T kT T T uT ) (31)

where T'; is the determinant of the tensor of inertia of a .

molecule of kind 7 and

.*___”i sinf; (wo‘]i'wo>
n; 0 exp\—%r 7 ) (3.2)
The term Q; is defined by
. . wo'li'wo
Q,-~/smB.exp( 25T )da;.
If we write
fi=fo(1+¢5), (3.3)

the zero-order equations are:

Z / (fOfY~f) k- gi:S (k) dkdv,d ejdew;=0. (3.4)
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A solution of the zero order equation has been carried out
and found to be given by (3.1). In these solutions, ni*, vo,
wo and T are arbitrary functions of the space and time.
We choose to let these functions to be local equilibrium
values of the corresponding macroscopic functions. This
choice  imposes the following restrictions on the
perturbation functions.

/ f:'oqsidvidmi: 0, (3.5)
Zm‘-fv.-f‘-"gb,dv,da.-dm;——- 0, (36)
Z[l;'w;f,-otb.'dvidu;dm;:(), 3.7

and A
Zf(%mfvi"i‘%ﬂi' L-Q)ffdvidedo,=0. (3.8)

These conditions are necessary and sufficient for a
unique solution of the equations for the perturbation
functions ¢;.

The first-order equations are

Diff= Z/gu(d’)d“n , (3.9)
Tu1(8) = [ (8+87— i b5) 7K 0365 () ddv dos

We proceed to evaluate the terms in D; f? in (3.9) by
straightforward differentiation of (3.1) with respect
to !, 1,V;, ;, and ©; We eliminate the derivatives with
respect to ¢ by using the equations of change, assuming
that the forces and torques are independent of the
linear and angular velocities. Thus we obtain

miVE Qi i Q m;ViV;
foiof‘“[ (ZkTT T )U+ ]ar

1;-Q:V; 9
+ ET 'a;_‘ﬂﬁ'*‘ (e Qz+d V)
m.V,z Q."l;'ﬂ; olnT
(-2 2B 2, o)

where d(«;) and e(«;) are defined by

8 /n; n* alnp
d:= af(n.)+7(17)“ar“nkz~( ~ )““’

e=— kT[G ()G (3.12)

In these equations we have used m defined by mn=p
and the total average force F defined by

nF= Z;?h((F.))

The superscript zero (%) is used to indicate that the relevant

average value is calculated by using fi®. The definitions of
di and ei are.

. ;[dida;‘=0 (3.13), ——[- z‘;/eid‘!i: 0. (3.14)

it convenient to partition the orientation space into a
large number of cells. The volume of cell ! is denoted
by T
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Thus Eq. (3.9) is rewritten as

D fild= ;Tﬁf.’j,kz (¢), (3.15)
?
Fiin(e) = / (i’ + 50 —Pin—i1)
X fe¥fi.0k - gi:S (k) dkdv,dw;.

The first pair of indices refer to the two species and
the second pair refer to the two cells of orientation
space such that the first species index is associated with
the first orientation space index and the second species
index is associated with the second orientation space
index.  We also rewrite (3.10) in the following way

dInt
Difid=K it or

. 2.9 3.
+Ki -arV0+K|,k -arwo

+Kitd i+ Kiib e,

where the vectors and tensors K" are easily found by
comparing coefficients of similar force terms in (3.10)
and (3.16) and evaluating in the appropriate orienta-
tion space cell.

In the solution of the set of integral equations
(3.15) for ¢, we consider the derivatives of Vo, wq, T,
and all but one of each of the d;; and e;, as inde-

(3.16)

pendent parameters. The linear form of the functional

Fiiar implies that each of the ¢;x is linear to these
parameters. That is, ¢; ;. has the form

oInT b ]
sp== ey e om— N F R Py
¢l.k As.k ar +At,k -arvo"i"A,,k ‘arwo

+ ;TL(A,'J;H" ‘di,!+Ai.ksi'z 'ei.l) . (317)

Inasmuch as the d; and e, are not independent, but are
related according to Egs. (3.13) and (3.14) we take
Acpti*=A; 5% =0 for all species in all orientation
- space cells.

Substituting (3.17) into the integral equations
(3.15) and equating coefficients of the independent
parameters (or “forces’”) we find

Z‘rﬁef,u(A') = K.',k', fory=1,2,0r3, (318)
i

2T s (AN Ry =K Wk fory=4or5, (3.19)
it

0 m. n 0 8 !
Ki.k'”""""‘=Ki.k'(0k % —M) (3.20)
Tm Th
and
A rmhomham A prmm— A Wk, (3.21)

For convenience in the solution of the integral equa-
tions we define: :

M s_m_‘___.-V.-’) £..0
Kix (‘5 25T Vifisd,

Qi lin-Q; 0
T T )V‘f x

K= kl"_z_f(v‘,v{_ WauU)fia0

K;i2=— (-3-

e m\‘Viz_Qi’li.k'Qi) e
Ko %< %T T uT )

K=K +K; 12 K=K 2+ K ;,2U.
A=A NAR A= A2+ 4,2

w
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where A ;7 (p, g=1 or 2) are solutions of the integral
equations (3.18) with the auxiliary conditions given
by Egs. (3.5)—(3.8). The integral equations are now
solved by a variational method.® The variational trial
functions must, of course, have the proper tensor trans-
formation properties. We use as variational functions,
functions of the following form:

Ai'kmh’.Mh_—_v A4 i.k'"h,'m)‘Wi,kmh,‘m’l (3.22)
where A ; ;"™ are scalar functions of the two scalars:
miV Qi lin Qs
TO%kT 2T

€; and € x =

and

W lt=W, =W,/ mh=V
i.k”=ViVi“%V;2U, Wi 22= 1,

Wisd= i)V, Wpgbbmi=gr

We approximate the scalar functions AikV by finite series
of products of Sonine polynomials.

where for simplicity, we have written y for all of the

superscript indices that we apply. The products of Sonine
polynomials are

— '4
S.-,;“.,.r,.uu= S",],;r'r"m‘— S;*;,.r,u‘"" 'mh

=S5y (e!) Sy (),
Siprre?t=Ssp" () Sy (e5.17),
Sskrr?= Sy (et) Sy (e:47),
Singrr= 5y (e4) Sy (es”),
Sire S omh= S (e4) Sy’ (es.7) .

Application of the variational mewwd provided a set of

coupled linear algebraic equations for the expansion
coefficients

define the following *
(R.g'k:,,r,u’= [S,'_k;rr,.n'Wi,kTZK{,k'dvid(a)i (324)
and

Tq

= — *, *

Qij ket tmtmer”= 2 : Nik"Np.q
pe T

X {881 (W s " S kirre”s W aa® St kimrme®) ip ke
F8ipb W i Sitrrr”s Wi a”Si pimemer”] ip.kq,} (3.25)

where the bracket and parenthesis operators are de-
fined and discussed in Appendix A. We find that the
application of the variational method as outlined above
yields the following equations:

Rikgrr’=— 2, T tm m " Qi ket rmemee”s  (3.26)

lmim?!

The solutions of these equations are subject to con-
straints implied by Egs. (3.5)-(3.8).

In reverting to a continuum concept for orientation
space, the preceding equation becomes

mt':f'f“’( a")

= Z/r f Qujirrrremrme” (@, €7) Gjirvrmer” (@) Aty
imm (3.27)
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We expand the R's , a's and Q's in terms of the
representation coefficients of the three dimensional rotation
“group; DY (@)us  in the following manner.

Riprr=5inBs Y R (Lys | 7") DE( )
Lus

n; sinfB; -
. .*B *22a7 (Lys | m'm') DL ;) 4oy

ai;m’m"’=
) ? Lus

Q"i:rlrllmlmll,
7; sinf;
— :n ﬁt Z Q,-,"(L;.csL’u’s’!f'r"m'm")
3 ILupsLipls’
XDx( “\')u:DL'(“i)#’l"

The bar above the symbol indicates the complex con-
jugate. The expansion coefficients here are easily ob-
tained in view of the orthogonality properties of the
representation coefficients. The auxiliary conditions
(3.5)—(3.8) become:

a;2(Lys | 00) =0, (3.28)
2 _na;(000 | 00) =0, (3.29)
b)
> na;2(000 | 00) =0, (3.30)
i
> nga i (000 | 00) =0, (3.31)
)

> na(000] 01) +a72(000 | 10)1=0, (3.32)

and
> mja s m2(000 | 00) =0. (3.33)
)

Reverting to a continuum concept for (4.28) sub-
stituting these expansions, equating coefficients of
Dr(a;),., dividing by sinB;, and carrying out t}xe
integration over a; using the orthogonality properties
of the representation coefficients we find:

Z ﬁja,-'(L’p’s’ I m’m")Q,-;'(LpsL’u’s' l r’r”m’m”)
,2;:"/3"1 ! 2Ll+1
=———Ro(Lus|r7"). (3.34)
8r?
These 'equations and the equations of constfaint
(3.28)—(3.33) determine the expansion coefficients

e (Lyus | m'm’").

4. Evaluation of the collisional integral.

We introduce following relations for, the expressions for
the angular momenta before the collision by using a unit
vector normal to the plane of the collision contact k, the
radius vector from the center of molecule i to the contact
point ¢gi. We also introduce the dimensionless
translational  and rotational kinetic energies before a
collision e ¢ ® and ¢® |

We=W M, (6.1)
W/=W,;— M, (6.2)
Wi =lowet (6:XK)mdTal,  (6.3)
l-w7=1;-Wi— (8;XK) mdTA/5, (6.4)

e,—"=e,~'+M-:—lK2+2Mi-§K ’Wh (65)
'ej.l’= e’-‘+Mj—1K2—2M,'—'}‘C‘Wj, (6'6)
, 2my d: it (8:Xx)
& =es’+WeWi' (8:Xx)+mo(8:Xx) - : ?6’7) ‘

2mo . -
e,"=e,’—ﬁcwi- (§ij)+mo(deK) . Ii_ ‘f (8:Xx) 68)
In these equations we have used the dimensionless-
peculiar velocities:

T:Q;

: mi \t
Wg—(ﬁ) V.' and W;—-————(ZkT)*,

the vector (x) associated with the change of linear
momentum of one of the molecules during the collision:

x=2¢;;(k-T) (M :M5) ¥k (6.9)
Eiit=14p{ (6:XK) 171 (6:XK) + (8;Xk) - 1771
<(8;XKk), (6.10)

and the dimensionless relative velocity of the points of
contact of the collision:

.. o \} 7
[ By . Hij N7
r‘(ZkT ij <2kT)@[%9j' 6.11)

Further, ;; is the reduced mass of the pair of colliding
molecules, m; is the total mass of the pair, M; and M;
are defined by

Mi=mi/my and M i=m;i/my,
and g, is defined by
C%F (0:X8:) — (0;X 6;).

We further “define v, the dimensionless relative
velocity of the molecules:

_f B } (k3] y

v= (e - () V=V

| AV

Yo:('é'gi“) go: (6.12) k'r=k'7—"k70' (6.13)

In carrying out the integrations over linear velocities we
find it convenient to change variables to the reduced
relative velocity v and the reduced velocity of the
center of mass of the pair of colliding molecules,

mo i
¢= 2T (M VMV
We further note that

O+ =W W 2=c'+eit.

As an example, we consider explicitly the evaluation
of [Vi; Viliju the bracket which contributes to the
brace expressions leading to the diffusion coefficient.
Similar integrals have been evaluated in the second -
paper in this series (reference 2). The symmetric form

(see Appendix A) for this integral is
-1
2ni0* e

/(Vi'—V;) (V/=V)k g

Feifi8S (k) dkdv dw dvido;.
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We introduce I for g;; (6.11) and (3.1) for the equi-
librium distribution functions, changing variables of
integration from vy, w; V;, and o; to ®, v, w;, and w;.
Making the appropriate substitutions for the primed
variables in terms of the unprimed variables, we find
after integrating over @& that

LV Vidiiw
2(2kT)3 ,
=m 82(J300~3J210+3]120" jo;;o) S(k)dk
L 3]
(6.14)

In (6.14) we have introduced the J,.f integrals,
which are defined by:

J,,J=/(‘k-1r)'(k'*ro)"(72)r

Xexp(—y2—e;.— €jx") dydW AW,

For simplicity we have dropped the two species indices
and the two orientation space cell indices from J,,°
(and from £). In this theory we meet J,,f for {=0, 1,
and 2. Integration over two components of y reveals
va’l= va'°+ J(r+2)v’°,

= 2]..'0“*‘2](.4.2) p'°+ J(v+4)"u;

K. Yo
J,0=1x [ aw dw ; / dx 27 (K- )"
Xexp(—a*—e;r—ein).

We see, therefore, that we need consider the integra-
tion of only J,,.%. To this end, we change variables in a
nanner similar to that of the second paper in the series
Ereference 2), vz, to e.r, €4’ Yo', vo'*, ¢, and,
¢7*. After integrating over e, €47, ¢*, and ¢i* we
find

J",O-—

k.
f dvoidyg* [ dw (ko)
(‘Yo“)z (’]’0”‘)2] .
74,1 Nik !
1.2=T3(8::XK) -1 (d.-,z)(k).
To continue the reduction of J,,° we define #;;,; by:

N3,M5.k

o]
where

73,
Nijut= I‘n( 1-.1§+n11,;) Eii.lk_l"l.

We easily find expressions for k -y, and o;- (4;,:XK) in
terms of o™ (see reference 2).
We next change variables to v and « defined by

_ D tloyyiiln; (24 T Hoyeikn, 2
Pe.min(Titne, 24T dni2)

(6.15)

and

Nij, k= k * Yo.
After making the substitutions and integrating over v
we make a final change of variables from x and « to »
and 6 of plane polar coordinates. Thus we finally obtain

sorm e (L)

where

do4-x
A»'=/0 dé cos”8 sin”’
0

(O}

and Conmuni cati on Engi neers

and sin®6o=£;;,u. Integration of A,,r is trivial and
J.* for the v and »' values relevant to this theory are
given in terms of £;;u in Appendix A of reference 2.
Thus we find

— (2kT)}
[Vi; Vi]ii.lk=""(—"—)'"

R |
" Jeuasak. (616)

In evaluating brackets and parentheses for other
transport coefficients we meet, instead of J,,9, linear
combinations of J,,° and the following integrals:

K, b= f(ei.z"—e,',k') (k) (k- yo)” (v?)*
Xexp(—vi—e;/—eix’) dydw dw;,

L= [ 3= evr—eus) (k-1 (o) ()8
Xexp(—v2—e: i —ein) dydW AW,

2p;
M,» ( L ’) [(6. et 0 (85,1 Xk)
X(k-y) (k- v0)” (v%)* exp(—72—e:,/ — ;") dydW AW,

2ui\
N"’{""("}f—j‘) / B—eir—eix) i
(8iaXK) (K- y)” (k- o) (v3)¢
Xexp(—v2—eir—e;i") dvdw dw;,
P"';=[(%"‘€i.l') B—eix”) (ke v) (k- o) "(72);
Xexp(—vi—e;,r—eiu") dydw dw;

Q"'r=f G—e)?(k-v)"(k-yo)” (40)F
Xexp(—v —ei, i’ —eix") dydw dw;.

We find that these integrals can be reduced to com-
binations of the same integrals with {=0 according to
the recursion relations given earlier in this section for
J»¥. The integrations are carried out by the same
procedure used for J,,”, and we ultimately find that
these integrals can be expressed in terms of J,,:

T2~ T2

K, = L0,
Tine 24T
L,= é_]”,o Jv(v’+2) ’
u?
(5T d542—Titns. ) Jooran®™+
Mims, i
Mrr’o—'—-z_——_——_ ’
RBRLAR
I' I‘ nlllk vil (r*v,z—rimk)Jv(v’-H)o
%
Kimi 2
N /0= (] ’ 0— ‘. 0)
7T D\ ’71':"”*2 )
2., 2
Hii N 0Nk '
P ,0.:-—-——--——-( J ’ ’ )
() g\t + Treso
J,(,r_‘,z) f 1 Pﬂ

AT );L2(PJ mst—T ia?)

Nij. u? 1 Niilk
—(TTy) *715.:271;‘.&2]};
0= (,,__ Biimis® +3ﬂf:271i.k‘) T
UUNT 2Tt T/
Trors’(  pimid® Bini il ) Bitnidt iy
- "
Miau? \ 160278 (D) ey Tingsud” "OF a
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In evaluating M,,* and N,,? with the indices ¢ and j Vg Vidu= ’M’e G'u(l) {V” V. }"_ _1’_"5@‘_1,(1)
interchanged, we must remember that this permutation au
changes the sign of k; therefore, we change the sign of RATAR AT _77' i€
the iﬁtegrand.gThe other integrals are symmetric with _{V'S! () V }" {V,, S¥ (EJ )V bi = 2n; G.,,(3),
respect to a permutation of 7 and j. M o

Thus we have reduced the brackets and parentheses {(ViSit(e); Vs }.r— {Vn Si(ef) Vidos =——— ' .,(3),
to twofold integrals over k.

{ViSi(e); Vi}y= &,,(3),
'We proceed to evaluate !
:he brace expressions. These now involve integrals over (Vi; Sieq) Vi) *"'=—j[.. (ViSit(er); Vil = =2
wo orientations and over k.
We define the following integrals

1 {vu S& (61 )Vt}u 031:(3);
@ii($) =EF f £:£2S (k) sinB;sinBidkd e d o;, (6717)

2Tn:M i
{(ViSii(er); Syt (e) Vidr=—— ; ®:;(5),
I‘ti"h 1125 (K) sing. si .
u(g‘) I“! Et S( ) sinf; Smﬁidkda,ldaz,é 18) {V-S;‘(E ’) . S;‘(e.-‘) V;}{i= {ViS;l(Gi‘); ‘Si (e;')V,-};;
ﬂt'z"l:'zﬂ 5 i\
u(g') _644‘4 (;\ T )’igtir S(k) smﬁ, smﬂ,—dkda;da,, =g {nig ![27 ,{B,,(S) 5&"(3)] ”'__l) &ii(s)};
- (6.19)
27”.M;E
noting that G4($) and @(¢) are symmetric with {ViSi(es); Sit(e) Vitss= ——F— - ®;:(5),
respect to a permutation of 7 and 5 and that
_ 1 ¢ " . 2771-.’M{M,’€
B:5($) +®i:(¢) =it —2) —@45(2). {(ViSi(e); S () Viti= —————@4(5),
7
From the definitions of the brace integrals (5.2), the ]
previous results, and the definitions (6.17) through {ViSy(e) St () Vi)t
6.19) we find that :
( ) =L{(ZL ’) [:15&“(1)__6‘;(3)]
4n; MM,e M
{Wt'; WJ} 5= 11(3))

4 [ Mizau(s) llMJ :1(3)+153u(1):]}
Wi W, },,=——{ (Y (@) — 501

21n
o (ViSiH(er); S (e) Vidar= — =5 4(3),
+——;'7ij i@:i(3) —3Q:; (1) ]}, and
V{S X(Eir) . S I(E"r)V'} ..
M M M e { i y 2% £
{Si'(e:) ; Si(es) }ﬁ=-’—“‘———i ~@+(3), { ”
=== ) (3G (1) +23® (3
(SP(et); Syt e) Yas M: <ﬂ )[ RARA
=2 {(Z’) CB..(3)+ M M Qi (3) =% 8i(S)+3Cu(3) —Leu(s) 1+ [ @si(1)
3MA-2M) ®4i(3) — 21U B s y
#2260 +a,0)7), o (M) 84 (3) ~3284(5) +3€4(3)
——3—1M-G--(5)]}.
2 iMi 4 v
(Sier); SPed) o= ——5®45(3), (ZkT)* (k1) .
i €=\ e €= S
{S;l(e,’); S*I(E‘,t) }“___ {S}I(E;") . S;‘(e.-’) }“ . TH mo(‘lrl-tu)
Integram.on of @:i($), ®ii(t), and C(¢) is carried
_ _2e[<zu> 631,(3)—}—”—]1[—'63,, 3) ]’ out as outlined in reference 2; we obtain frgm (6.17) :
i 1 1Y1 1
Q:i(0) = /E, [ —-{-l(-—' -—)<-— —‘)]
(S (e ; 5}1(61,)}‘,1,____2" M’G(B“(g,), ! 4 ’ qi'ge’ 1gige’ " * (Ix'+42‘ 91’+42’
XdSdS;, (6.20)
2ny
{(SiHer) ; Sit(er) Yor= _._7.2.5 e:(3), where d5; and dS; are elements of the surfaces of mole-
cules 7 and j and gx'(A=1, or 2) are the two prmc1pal
{Sit(er); Si(ed) Yui radii of curvature of the surface of molecule 7. The in-
tegrals ®:;({) and €;({) have the same form as (6.20),
T differing only by the inclusion of factors u:,2/T'# and
=2 (» )03"3 + ®:i(3)+C:i(3 } g on'y by the inclusion o Kaims
6{ ) [ i(3) (3)] rifnn?/ (TiTy)Y, respectively, in the integrand.

— H —
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4. THE SPHEROCYLINDICAL MODEL

cylinder is of length L; and radius a. A point on the

cylinder is described by the coordinate z; and the
- azimuthal angle ¢;. A point on the hemispherical caps
is described by the polar angle 8; and the azimuthal
angle. Thus we find

(8:XXk) = (2 sinf;, z; cosg;, 0)
on the cylinder and
L . . L .
(8:X k) = =¥=~2— sing; sinf;, :b~2— cose; sinf;, 0

on the caps. Taking the symmetry axis to be a principal
axis of the moment of inertia we find that

M4 4 : .
pimd_fazd e cylinder

Td  LZ
Min
Ii 7 =aisin®¥;  onthe caps.

ai=piL2/4T;

and T'; is the principal moment of inertia about an axis
perpendicular to the symmetry axis. Furthermore, we
find that the surface elements are

dS;"'—" a,-dqo,-dz.-

on the cylinder and
dS,-: ad sinB.-dﬁ,-dw

on the caps. Finally the principal radii of curvature of

the surfaces are

Q=0  gi=co

on the cylinder and

on the caps. W=gp=o;

Combining these results with the definitions of
@:i(t), Bi(4), and €;;(¢) and integrating over ¢; and
@; we find that these integrals can be expressed as the
sum of four double integrals,

Qi) =6 (i) + 0.5 (4) + 6, (i) + 04 (ji), (7.1)
®:;(§) = 04 () + 64 (i7) + 06 (i) + 6 (i), (7.2)
Cii(§) = 04 (37) + 0 (45) +0uf (i) +0uf (§3) . (7.3)

o - A=4n(ait3))? (7.4)
a;,b&,-', B,-,_Ed B,, where ; is defined by :

Bi=Li/2a;. (7.5)
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APPENDIX B. o INTEGRALS

b !
9{(12)—1Aﬁxﬁ2[ ,smh“l(lral) +aa5‘“h (1:-;1)

I _1( oy z)*
(o) > \Itartartaem/ |’
: 1 . o0 \
913(12) =‘§‘Aﬁ1.32[ (oqaz)i Sin 1(1+a1+a2+a1az) ]’

1 . _ [24127] t
6,5(12) =%‘Aﬁxﬁz[3 (aem)? sin ‘(1 . +d1£¥z>

+ 24-ay+ap ] :
31+t a)(1+atotaa) |’

1, a V1 @
1 =Al — H—]+— -
84{12) A[aﬁs‘“h (1+a1) " <1+ae)

_{darte) sin_l( Tor )*]

(euon)? 14+aytartonoy
1
3(12) = :
67(12) A[ (eur az)i(1+a1+a2)§ . e T \}
Xsin (1+a1+‘az+ axaz) ]
24yt

65 (12) =4 [3 (1+arta) (14-artootayan)

+ ! i —1( ot )}]
() (14ogt-an) st 14 ataytaen/ |

i (73 :
A(12) = %Aﬁx[ !smh logt +~j sin™ <1+oq+az)

() inetrn |
[(1.;_,11)! (1+Olz) 4 (ledz) *]

«(12)= 1tota,
. Ink(12)
o¢ 19 =348 5 e
_ 2+toytan
64 (12) “%‘“3‘[3(1+a1+q2) (1 c0) (T e)?

Ink(12) ]
6(anon)t(1+4as)t |’

3
0s8(12) = “ABxﬁz[ *S‘nh“l(lilaz)

S -
(oucrz)i Itentartae

-
0u(12) =%Aﬁx[ ~Hhe s ()

1 a 31— 2ay
Hiaginhat S ) |
5 14 (1+4ay)t Ink(12) |
Oy (12) = %Aﬁl[3 (I4artas) ™ 6(aee) (1+as) i].
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I nf ormati on,

Fig 1
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Results and Discussion.
F{ig 1 shows double stranded DNA and Fig 2 shows
diffusion of gene regulation protein particle to bind the
operator region of the DNA. The lower part of Fig 2 shows

the dissociation of the gene regulating particle. Fig 3 is
the computed results by Curtis and Muckenfusss for the
ratio between bulk viscosity k to the shear viscosity 7
as a function of
BX=1A22))*/2a) = ['(ma?)

where L is the length of cylindrical part of sphero
cylindrical model, a is the radius of the sphencal part. I" is
the moment of principle inertia. m is the mass. Fig 4
shows the ratio between the thermal conductivity —of
sphero cylindrical particle and rigid sphere one as a
function of §. In both of these figures, §was altered
from 0.2 to 1.0.
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Fig2
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Fig 5 shows three dimensional display of shear

viscosity 7 as functions of number density and molecular
mass. Fig 6 shows three dimensional display of thermal
conductivity as functions of the length of the sphero
cylindrical particle ( denoted by length) and radius of the
second particle ( as the ratio to the first particle that changes
from 0.9 t00.1).

The preset investigation when extended wiil be available
for evaluating the local physical potential field around the
bio physical reaction field near the bases of genes,
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