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b5 %L A method was introduced for computing the three dimensional distribution of the free energy and
electro static force in a DNA molecules that has been proposed by Bailey ( 1976 ). A DNA
molecule was modeled by a cylinder composed of three regions, inner region in which there is no
ion, the intermediate region where the ions interact on the basis of screening effects of Debye-
Huckel theory. These two regions were described by the Laplace equation. The outer region was
described by the Poisson equation due to the surrounding ions atmosphere. The coefficients of the
equations were determined by the continuity across the two boundaries of the three regions. The
potentials and forces heavily depended on the circumferential angles. The present method, when it
was improved, will be available for evaluating the free energy and potential of the DNA molecule.
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1. Introduction.

Characterization of DNA has been progressed for these
two decades. Precise molecular structure has been reported
particularly in their  geometry. Fig 1 shows the
configuration of the DNA molecule showing the double
helix strand ( Fig 1-a ) . The Top view ( Fig 1-b ) shows
how the phosphate charges are organized along the helical
line with equivalent spacing. There are ten phosphates
for each helical return  with raise angle of 32 degree. Fig
1-c shows schematically the spatial positioning of the
electrical charges around the modeled DNA cylinder. L is
the length of the inter helical interval. ¢ is the latitudinal
angle around the circular cross sectional plane of the DNA.
Since the DNA molecule is consisted of neatly arranged
charges, there is reasonable necessity to analyze the
potential and electrical force derived from them so as to
evaluate the dynamical behaviors of the DNA.

The present work introduce a method proposed by Bailey
(1976 ) for computing the potential and force in DNA.

Fig 1-b

B-DNA

Fig 1-c
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2. Assumptions.

1. DNA helix is a long cylinder which is impermeable to
the screening ions.

2. Phosphate charges locate along the helix.

3. The position of the charge is expressed

zj=zoj +kL e ) .

where zj is the axial position of the j th charge, k is an
integer, L is the periodic length of the helical charge
distribution. For circumferential direction

dj= doj+k2xmx e o)

where ¢ ] is the circumferential angle of the j th charge. The
radial coordinate of the j th charge is pj.
4. For the simplicity, the inter molecular interaction derives
from screening ions and the DNA helix.
S. The distribution of the screening ions is the linearized
Poisson Boltzmann distribution on the basis of the Debye-
Huckel theory.
The region I is the DNA cylinder with a radius b and
dielectric constant Dh. The points of discrete charge
originated from phosphate locate in this region. Region II
is the area of the closest approach of the screening ions
which range b < p< d. (d-b) is the radius of the
screening ions.  Region III is the region to which the
screening ions can approach. Their distribution can be
given by the Debye-Huckel theory. The dielectric constants
for region II and II are assumed to be the same D which is
the constant of the bulk solution.

We have to solve the Poisson equation in all of these
regions under the adequate boundary conditions.

3. Geometric consideration for the discrete
distribution of the point charges due to
phosphate groups.

1. Circumferential direction.

There are ten phosphates which are arranged helically
around the central axis of the DNA cylinder. Since they are
equally spaced along the helical pathway, each electrical
charge makes ¢=27/10. The k th charges has

Fig 2

[1I
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Fig 3 -a

Fig 3-a. Circumferential positions of

charges.

Fig 3 -a is the top view of DNA molecule showing the
circumferential positions of the Phosphate charges on the
horizontal cross sectional plane of the DNA helix. Each
position was denoted by z0, z1, z2, z3 --. The
circumferential angle between charges atz0 and z1 is
expressed by ¢kl. The angle from z0 toz2 is ¢k2,
from z0to z3 is $pk3 and to z4 , k4. Since all the
phosphate charges occupied their spatial positions in
equivocal distances, we set all the circumferential angles
between two neighboring charges ¢km = ¢k.

Fig 3-b. Axial positions of charges.
Fig 3 -b is the side view of DNA molecule showing the
axial positions of the phosphate charges. O is the center
of the cylinder. 0O-zHO-zH1 is the horizontal cross
. sectional plane on which phosphate charges positioned at
z0' and z1' on the helical curve were projected vertically.
In this figure, " ' " denotes the position of an
electrical charge on the helical curve and H denotes the
charge position  projected on the horizontal plane.

zk0 is the axial distance of the O th charge from
reference horizontal cross sectional plane O-zH0-zH1 and
zkl is the axial distance of 1 th charge from the same
plane. The rise angle between two neighboring phosphate

charges are, thus cos @ = (zH1 - zHO )/(z1' - z0'").
Since all the phosphate charges are arranged in parallel,
the axial rise of charge position at z1' from that at z0'
is (z1'-z0")sin@. Thus the axial distance of the1l th
| charge from the horizontal plane zk1 is expressed by zkO

zkl=2zk0 + (z1'-2z0')sing.
By this recurrent formula, all the axial positions can be
O expressed.

Fig 3-c

¢ k Fig3-c.Horizontal position of charge.
e . . .

» Fig 3 - is  phosphate charges projected on the
0 k horizontal plane. They make the angle ¢k with the center
. of cylinder O. On this horizontal plane, the distance O-
( T - (b k ) /2 zHO and O-zH1 is equalto pk, the trigonometric relation

Iziin1 -zEn I /singpk= pn/sin(( w - pk)/2)

holds.

HO e zH1
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circumferential angle of
bx=27k/10 e 3)
2. Arrangement along the axial direction.
Denoting zk is the distance of the k th charge from the

horizontal plane position zH1 of the DNA helix to the
position on the helical pathway zk' ( Fig2 ).

Zk=2zk-1+1z' -zk1' Isingp eeeeeeee- 4)
1 is the rise angle.
3. Relative positional arrangement between the adjacent

charge.
Since the relation between

costp =l zHx - zHk-11/1 2k -2k1' I <ememmmen (5)
IzHk - zHk-1 I /sin(pk) = ok /sin(( /- pk)/2) ------- (6)
Hence

cosp =pksin(pk)/sin(( w-pk)/2) /lz' -z-1' I---(7)

Thus
ITz' - zk-1' I = pksin( ¢x) /sin{( 7w- px)/2)* 1/ /cosp
~®)

Hence the k th position on the axial direction is

Zk = Zk-1 + Lz’ - zx-1' I'sinp
=zx-1+ pksin(¢pk)/sin(( 7w-Pk)/2) tanip
=k pksin(pk)/sin(( w-pk)2) tanyp  ---------—- 9)

From the reported measured data, we have

® =32° and ¢ = 36°

4. Mathematical description of the system.
Phosphate groups produces a charge density on the
region [ which is a sum of delta functions

ol=2¢ej 0C-5) - (1)
i
The sum is all over the points of discrete charge. Then the
Poisson equation is

V2pIr)=-47/Dh pIF) = e 12)
and the related Laplace equation is

v2ypIn=0 e (13)
The related particular equation is

ViPpp()==47/Dh T gj 6(r-1)  ----mmmme (14)
j

The particular solution can be obtained by the Green
function

V2G(r,)=-47 §(1-1') =-47t/p 6 (p-0") 6 (z-2)
0(e-07) (15)
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where -
6(z-z)=12m §dAexp(iX (z-2'))  ---mmei (16)
6(0-¢)=1272 exp(im(p-9)) oo a7)

By these expressions, the Green function is

G(r,r) = V42 fdaexp(ia (z-2')) { = exp(im(¢

-0 gm(o,0' )}t e (18)

where gm is the radial Green function that satisfies

Vopdldolodgm/do]l-( A2+ (m/p)*)gn
=-4n/p 6(o-0") e (19)

which is obtained by the ortho gonarity of the delta
function. gm gives

gm(p, 0" )==47/[ 0 W(D1,9%2)] p1(p>) p2( <)

where ¢ > defines larger of p and p'. P1(p>) isa
solution of equation (15) that satisfies all the boundary
conditions when p> p'. ¥2( p<) is a solution that
satisfies all the boundary conditions for p< p'. W is
the Wronskian of 1 1(p>) P2( p<). Utilizing these
expressions for the radial Green function, the particular
solution is

Vp( 0,2,0)= 1/(7t2Dh)>3 €j Sdl cos(A(z-7))

{ Zcos(m(¢- d)J))gm(p 03)+g0(0 032}

m=1 e (21)

for A 0, the Green function is
gm(o,pj)=47m Im(A pj)Km(A o)
go(o,0j)=4mIo( A pj)Ko(A 0) --------- (22)

and for ) =0, the radial Green function is
gm(p, 0j)= wm(pj/p )™
go(po,pj)=2mlog(l/p) = e 23)

The boundary conditions at p =b
pI(o=b)=pI(p=b) - (24)
eloyl/dp=0a9pll/0p = —emmemee- (25)
The eigen values are set as

a@P=n2 2+ g2 e (26)
By setting the following - coefficients,

Qumi=8¢0/(LDh)[ncKm(a@d){ Imi(ncd)
+Imii(ncd) }/2
~a(n) { Km1 (e () d)+ Kn+1( @) d) }/2Im(ned ) |
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Qum3=-¢o/(LDh)[ncKm(a®mb){ Km1(ncb)
+ Km+1(ncb)}2
+ (@) Km(ncb) {Km-1( a(m)b) +Km+i( a¢(n)b) }/2 ]

Qnm4 = -Dh Im(ncd) { Kmi(ncd) + Kms1(ncd) }/2
+D {Imi(ncd) +Im+1(ncd) }/2Km(ncd)

QnmS = Dh Km(ncb) {Imi(ncb)+Im+1i(ncb) }/2
-D {Km-1(ncb) + Km+1(ncb) }/2Im(ncb)

-------- (27-¢)
Qumé6 = (Dh-D)Im(ncd) { Im-1(ncd)
) +Ims1(ncd) }/2
--------- (27-)
Qnm = ( Qnm1 Qnm2 + Qnm3 Qnm4 )
/( Qnm1 QnmS5 + Qnm3 Qnm6 )
--------- (27-g)

Sml= g0/(LDh)(D+Dh)/d®[-k {Kmi(xd)
+ Kms1(kd) }2 -m/dKm(kd)]

Sm2= ¢ o0/(LDh)(D+ Dh)d™b?m | -k { Km-1( & d)
+ Kmii(kd)}2 +m/dKnm(kd)]

Sm3 = (D+Dh)d™ po™[-k { Km-1(xd)
+ Kmi(kd)} 2 +m/dKm(kd)]

Sm4 = (D -Dh b2/ d™ o o™ ) [- k {Km-1( k d)
+Kmi(kd)} 2 - mdKm(kd)]

Sm=(Sml +Sm2) A Sm3 + Sm4)

Then,we have the potential for the inner region. I

PpI=2 % £ Qomcos(nc(z-2z0j))cos| m(¢p- ¢0j)]

j n=1 m=1l
*Im(nc po)Im(nc p)
+2 2 Sm cos{m(op- ¢0j)] o™m
] m=1
+ ¢ Ko(kd)/[LD g dK1(kd)]
+ ¢/ (LD)log(db) +z/(LDh)logb)+ pp --------- (30)

The characteristic potential is 1) p

Ppp=8g0/(LDh)T ¥ cos(nc(z-20))){Io(nc po)
j n=1
Ko(nco)/z+Ecos[rr11(d>-q§oj)]Im(nCpo)Km(nco)}

m=1

+ ¢0of(LDh)Z X cos[m(¢p- ¢p0j)]I/m o™ po™
j m=1

+ glogl/p )/LDh)y e (31)

The potential for the intermediate region 1p Il is
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pI=F Y 3 Qnmcos(nc(z-zoj))cos{ m(p- ¢oj)]

j m=0 n=1
*[ Al In(nc p)+FII Km(nc p)]
+3 S [BI p™ + GII/p™] cos{m(¢- ¢0j)]
j m=1

+TH+HI/ (cp) meeeeee- (32)

FlI=b[[ (1- €1/ £2)Qnm Im(nc po)Dinmb
*Im(ncb)+ 8co0/(LDh)Im(nc po)
{Km(ncb)*DInmb- ¢1/ ¢2DKnmb*Im(ncb)]]

All = 1/Im(ncb) [[Qum Im(nc po)Im(ncb)
+8¢0/(LDh)Im(nc po)Km(nchb)-FIIKm(ncb)]]

where
DInmb=nc ¢dIm(z) dz(z=b)
DKnmb=nc g Km(z) gz(z=b) &)
and
GlI=1/m[[(1- €1/ €e2) Sntmb®+(1- 1/ g2) €0
/(LDh) oombm ]

--------- (36)

BlI=1/b™[[ (Smmb™ + po™bm)/m - GII /b™]]
--------- 37
HO=cb e1/¢2 &/(LDh) =weeeemn (38)
Til= ¢ /(LDh) log(l/b)-HII/Acb)+ I ---mmmmm- (39)

The potential for the external region 1 Il is

pII=3 3 ¥ Flllcos(nc(z+r 7/2)) cos[ m(¢
i on=lm=0  +r17/2)1*Km( a(m) o)

= 3 I FII'cos(nc(z+r /2)) cos[ m(¢
j m=0 n=1 +r72'/2)]*Km( ¢(n) o)
+ 2 X FII" cos[m(¢p+r1 7'/2) 1 * Km(a(n=0) p)
j m=l

+ FIII" (n=0,m=0)/Ko( ¢ (n=0)d ) --------- (40)

FIII' (m=0,n=1 loop ) =[ All In(ncd)+ FII Km(ncd) ]
/Km( @(@)d) -------m- (41)

FIII" (n=0, m loop ) =[ BId™ + GII/d™] / Km( o (n=0) d )

To describe the three dimensional distribution of potentials
and forces at the inner and middle regions, we computed
for circumferential directionevery n /6 forn=1to 6.
For axial direction, we computed them at z=2,4,6,8 and
10 108 cm. For the bio physical parameters, we set

L=510% k =1010% b=10108
00=9108 d=12 108

For the inner region , we took p=9.5 10% and for the
intermediate region, p =11 10-%. In the following figures,
potentials were timed by the factor ~ 10-® and forces by
the factor 109, the axial positions were timed by the factor
108,
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3. Results.
1. Distribution of potential at the inner region ( Fig 4 ).

Fig 4-a is the top view of the three dimensional
distribution of the inner potential. The potential slightly
depended on the axial position at small circumferential
angle. With anincrease of the angle, the axial dependency
became explicit. At the middle axial point z =6 108 , the
potential seems to reach the local minimum. Fig 4-b
emphasizes the dependency of the potential on the
circumferential  direction on the half plane of the cross
sectional area. The potential monotonically increased until
the contra lateral position.

Fig 4-a

Ml region Potentidl
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2. Distribution of the potential at the intermediate region (
Fig 5).

Fig 5-ais the top view of the potential at the intermediate
region just emphasizing its dependency on the axial
position. As in the inner region potential, there was local
minimum at the middle axial position z =6 108 . Also this
figure shows the local minimum at the circumferential
angle of 2 7/6 atany axial position. Fig 5-b shows
the potential dependency on the circumferential angle.
The potential decreased during 1 7/6 to 2 7/6, then
increased monotonically until 67/6.

Fig 4-b

Inner Potential

Middle region Potential
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3. Distribution of the force at the inner region ( Fig 6)

The three dimensional distributions of the forces were
more complicated than those of the potentials. Fig 6-a
shows the force generated by the inner region potential.
The potential increased along the circumferential direction
until 5 7r/6 then decreased slightly. The dependency on
the axial position ( Fig 6-b ) is more complicated where
there was a little oscillation of magnitude of the potential
along the z axial distances.
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4. Distribution of the force at the intermediate region:( Fig
7)

Fig 7-a shows the three dimensional distribution of the
force generated by the potential at the intermediate region.
The force has oscillated depending on the circumferential
direction. The force also oscillated slightly as function of
the axial distance z . ( Fig 7-b ).

4. Discussion.

The present investigation was founded on the Debye-
Huckel theory. We give some explanations for the
assumptions and approximations.

Fig 6-a

Fig 6-b
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1. Assumption 1.

" Each spherical ion can be replaced by a point
charge at its center ".

This assumption neglects ionic volumes and is only valid
when the mean inter ionic distance is large compared with
their sizes. This state is the dilute solution.

Around any ion of type j, the charge distribution is
assumed to be spherically symmetrical. The charge density
of thej ion pj(r) is

(o]

f4m 2 pjmdr=-zie o (A1)

a
This expresses the electrical neutrality. The total charge of
all the ions around the j th jon is equal and opposite to the
charge on j th ion. a is the distance of the closest
approach to the ion. It is equal to the sum of the radii ai and
ajoftheith andjth ions.a=ai+aj

The sphere of radius a around ion j is the volume from
which the centers of gravity of other jons are excluded.
This approach corresponds to the assumption in the Debye-
Huckel mode.

2. Assumption 2.

The variation in charge density o j(r) is assumed to follow
the Boltzmann distribution law. This states that tyhe number
ni of ions around the ion j is given by

ni=ni° exp[-wij(n) /(ksT)] - (A-2)
and hence
0i()= Zezini= Tni® zi exp[- wij(1) (kB T)]
i i e (A-3)

where wij(r) s the potential energy comresponding to the
mean force exerted between ions iandj. The number ni®
is effectively the concentration of the salt solution. The
difference of n - ni® is the average local excess or
deficiency of an ion ( cation or anion ) at a point where the
potential energy is wij(r). The Boltzmann factor is the
statistical weight multiplying  the ionic concentration to
account for mean local electrical interactions between ions.

3. Approximation 1.

The factor wij(r) can be replaced by the potential energy
of an jon i which locates at a point where there is a
potential  ¥j duetoion j. This is a mean energy because
it corresponds to the force acting between i ion and j ion after
averaging over N- 3 other ions in all possible positions.
Thus, we can approximate

wijt) SzieVj@x) 000 - (A-4)
Combining (A-3) and (A-4) and using the spherical
coordinate Laplacian expression to satisfy the symmetry
assumption 1, we arrive the Poisson-Boltzmann equation

12d/dr (2dV /dr)=1/ c0g)S eni® z
i
exp[- Vj(r) Ak T)]-(A-5)

4. Approximation2.
Equation (A-5) does not have an analytic solution. To
obtain an analytic form, we approximate
exp(-y)=1-y fory<<l.
This is equivalent to set
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zie ¥j() /(kBT)<<li-—--- (A-6)

This approximation is not made to satisfy the superposition

theorem of electrostatics. ~ The theorem depends on the
linear form of equations and not on the linear relationship
between o and V.
The contradiction using the non linear Poisson- Boltzmann
equation. Approximation 1 amounts to neglecting all
interactions between groups of three, four et. ions and only
considering those between pairs. This is only valid for very
dilute state when the number of clusters of more than two
ioms are negligible.

The linearization of the Debye-Huckel theory, (A-6) is
equivalent to assume that there is sufficient dilution to
increase the mean distance between ions sufficiently to
produce alow potential.

5. Conclusion.

1. A modeling theoretical method was proposed for
analyzing the three dimensional potential and force
distribution around the DNA molecule.

2. The potentials and forces at the inner and intermediate
regions of DNA cylinder changed on the circumferential
angles.

6. Reference.
1. Bailey, J.M. Biopolymers vol 12.pp 559-574.1973.

APPENDIX.
Putting the sum of the rotational factors by

S= X cos(m( ¢ - ¢j))cos( A(z-7)) -(Al)
j=1

By assuming that the DNA helix is an infinitely long
cylinder, the position of a charge is given by specifying
some unit cell and the position of the charge in that unit cell
is given

z' =z +kL ~-(A2)

dj'= ¢pol +k27 --+(A3)

Using these relation and cos(x-y ) = cosx coy + sinx siny

S= T3 cos(m( ¢ - pol))cos( A(z- zo/)) cosAkL

k=-co j'=1

= ZelAkLy cos(m(p- pol))cos( A(z- zof ) )eirkL
keo =1 —(A4)
Since

5 elAkL =3 elk[AL-2n7] -9 wo(AL-2n )
k=-co k=-00 --(A-5)

where n=0, &1, +2, +3. Hence

S Akl = 27/ % 5(A -2n7/L) ---(A-6)
k=-c0 n=-co

Thus,

S= 3 cos(m( ¢ - poi))cos( A(z- zoi))
j=1

2 g/LZO6(A -2nx/L) (A7)

n=-0
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