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We proposed an H2 control and system design method for analyzing multi states  Acetylcholine
channel transition in the synaptic transmission of the central nervous system. The acetyl choline-
receptor binding processes consisted of one Ach -receptor complex, two Achs -receptor complex
and Ach free receptor. Each of them have activated form or inactivated form. Ach was set as
control input. For the H2 control, we induced the differential equations for the state variables and
estimator of the system which were expressed by two Riccati equations. By solving the
differential equations linked by the Riccati equation, the transient changes in the concentration of the
Ach-receptor complexes were computed numerically. The present investigation will be available for
Ach -receptor channel function of the central nervous system.
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1.Introduction.

Neural information transmission is achieved by the
interaction between transmitter molecules and Acetyl choline
is the typical transmitter for neuro muscular junction. The
Acetyl choline-receptor complex has six states depending
on the number of Acetyl choline molecules and states of
the channel. There are lots of agonists and antagonists
that compete with the receptors. These molecules are
regarded as noises to disturb the signal transmission. In
the present work, we apply H2 control theory for signal
transmission across the neuro  muscular  junctional
membrane disturbed by the agonist and antagonist.

2. Physiological Background.

The mechanisms for the Ach channel kinetics that have
been confirmed are summarized as

1. Binding two agonist molecules opens channel

( Katz 1958, Dionne 1978).

2. Non liganded ( Jackson 1984, 1986) and mono

liganded agonists can open the channel
( Dionne 1978, Jackson 1986, Sine 1990 ).

3.  Affinity of the first ligand binding is different from
the second ligand binding( Sine 1990, Jackson 1988 ).

4. Binding and gating are distinct ( Blount and Merlie
1989 ) and multi states ( Jackson 1988, Sine 1990 ).
5.The length  of channel opening durations and closing
durations have some stochastic correlations ( Colquhoun
and Sakmann 1985, Jackson 1988 ).

We explain briefly above findings as fundamentals
for the modeling of multi states Achchannel gating.
We did not, however take the desensitization ( Jackson
1988, Sine 1990) and influence of extra cellular Calcium
ion ( Sine 1990 ) into modeling to avoid the complexity.

2-1. Structural findings.

Muscle cell nicotinic ACh receptor is composed of five
homologous amphipathic helix ~subunits namely « 8 §
and either ¥ or ¢ (Guy 1984). They conform barrel
like holes perforating the membrane with several different
open conformations. The agonist binding sites lie at the
a-71 or ¢-¢ and q-¢§ subunit interfaces ( Blount and
Merlie 1989. Pedersen Cohen 1990). This fact suggests
that a subunit pair constitutes a distinct gating domain.

2-2. Shut and open states.

Three exponential terms of the probability density function
could well approximate the shut period histograms of
gating currents ( Colquhoun 1985, Jackson 1988 , Sine
1990 ). Biochemical studies ( Dionne 1978, Karlin 1983
) reported that there are two binding sites. Hence, there
are three shut states corresponding to zero, one and
two agonist bond states. Similar results have been reported
for the open state ( Colquhoun 1985, Jackson 1988 ).

The fraction of brief closures per mean open duration
increased abruptly at the agonist concentration of 14 M.
(Jackson 1988). Beyond 1 1M, this fraction increased a
little. Similar tendency was observed for the open states
( Jackson 1988).  More over, above 1 ;M agonist
concentration, long duration openings predominated while
below 1y M, short duration openings predominated.
These support that there are distinct two different levels
of Ach binding for channel closing and opening, one state
which still has an empty site to catch Ach and another
state which has been saturated ( Jackson 1988, Sine
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1990). For channel opening, mono liganded gating leads
to short period openings while bi-liganded gating
induces long period openings ( Jackson 1988, Sine 1990 ).

Spontaneous opening and closing of the Ach channel
without ligand binding have  been reported ( Jackson
1984, 1988 ). These components also depended heavily
on the agonist concentration ( Sine 1990 ).

2-3. Interrelations different

channel gating states.

Statistical correlation analysis among the open periods
( Colquhoun and Sakmann 1985 ) revealed positive
correlations between successive open states such that
long open periods follow long open durations. The
brief closures during an open period appeared at a
constant frequency and associated with long period
openings ( Colquhoun 1985, Jackson 1986 and Sine 1986
). The transition to the double liganded open state arises
from the double liganded closed state but rarely from the
mono liganded open state nor mono-liganded closed state (
Colquhoun 1985). The possibility is low where the
transitions from one closed state to two different open
states suchas to mono liganded open state and to bi-
liganded open state ( Colquhoun 1985). This observation
is consistent to the ordinal assumption of the stochastic
process in which the probability of simultaneous occurring

of two events is negligible during sufficiently short time
period At.

among

2-4. Difference in the first and the

second ligand binding and dissociation.

Kinetic differences between the mono ligand binding and
bi ligand binding have been verified by biochemically (
Karlin 1967, 1983) ,pharmacologically ( Sine and Taylor
1981 ) and physiologically (Jackson 1988, Sine 1990,
Auerbach 1993). Although both of these binding rates are
diffusion -limited ( Sine and Steinbach 1987, Sine 1990,
Auerbach 1993 ), Ach binds to its two sites with 300 fold
( Sine 1990) to 1000 fold different affinity ( Jackson
1988) .The first ligand binds tightly but opening the
channel weakly. The second ligand binds less tightly than
the first one but accelerates the rate of channel opening by
the factor 2500 ( Jackson 1986).

For dissociation of the ligand, the dissociation rate of
Ach from amono-liganded complex was 350 to 1000 fold
lower than the rate from a bi-liganded complex ( Sine
1990). More over, the dissociation constants of the first
and the second ligand from the receptor sites differ when
the channel is open ( four fold ) and closed ( 1000 fold
)} (Jackson 1986).

Fig1
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where * denotes activated state, subscript for R denotes
the subunit of Ach receptor. Subscript for A indicates the
number of agonist molecule.

3. Modeling and simplification.

Fig 2 andtable 1 are the most detailed picture of
multi states Ach channel proposed by Auerbach (1993).
This schema discriminates two subunits for Ach binding.
Incorporating all of these possible states requires an
extensive matrix computation for H2 control. Hence, we
assumed ( but see discussion ) the functional equivalency of
the two subunits.

1. Inactive two mono-liganded states AiRi1 and AiR?2
are associated to AR.

2. Mono-liganded partially activated states AiR1* anc
A1R2* are condensed to AR*.

3. Bi-liganded partially activated states AzRi1* and
AcR2* are summarized to A2R*.

These simplifications are practical because it is difficult to
discriminate the rate constants between Ai1R1 and A1Rz,
between A1R1* and A1R2*, between A2R1* and A2R2*
4. When two agonists have bound on the receptor
subunits, the resting subunits are immediately and
simultaneously activated (Unwin 1993, 1995). This can
be interpreted as the allosteric nature ( Monod et 1965 ).
We omit the intermediate partially activated states. This
means ignoring sub-conductance state or partial closed and
open states ( Colquhoun 1985 ).
5. Once doubly liganded, the channel opens rapidly at a
rate of at least 25000/s which is diffusion limited rate (
Rohrbough & Kidokoro 1990, Land and Salepeta 1981,
Colquhounn & Sakmann 1985, Sine 1990, Auerbach 1993
). Thus we can approximate the A2R* by  the bi-
liganded open state A20. Thus, we approximate
A2R* =A2R** = open state.

Fig 3 is the most reliable and approved picture (

Colquhoun 1985, Jackson 1988) to which we apply H2

control.  In summary the present model bases on the
allosteric  transition and functional equivalency between
the two subunits.
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4. Mathematical description of multiple
states Ach channel.

4-1. State equations.

The temporal changes in the amount of these six channel

gating states per unit membrane area are expressed as
followings on the basis of mass action law.

d[RYVAt= ao[R*]+k1[AR]-( Bo+2ki [Ach])R

3 [ARY 3 t=2ki [Ach] [R] + a1 [AR] +2 k-2 [A2C]
-(k1+p1+ke [Ach]) [AR] ---mv @

9 [A2R)/ 9 t = kz [Ach] [AR] + o2 [A2R*]

-(2k2+ B2)[AR] e ®)
9 [A2R*)/ 9t= B2 [A2R ] + kz* [Ach] [AR*]
-(@2+2k2*)[AR*] e )

9 [AR*}/ 9t = 2 k2*[A2R*]+ 1 [AR}+2 k1*[Ach] [R*]
- (k2* [Ach] + @1+ k-1%) [AR*]---(5)
d[R*)/dt= Bo[R]+k1* [AR*]
-( @0+ 2ki* [Ach] ) [R*]
where [] denotes the amount of Ach- channel state per
unit membrane area. Sn is opening rate, g n is closing rate
and knis rate constant. The conservation law holds

Z { [R] + [R*] + [AR*] + [A2R*] +[AR] +[A2R] } = Et

where Et is the total amount of all of these channel states
per unit membrane area. Substituting

[R]= Et- Z{ [R*]+[AR*]+ [A2R*] +[AR] +[A2R] }

reduces above six equations to five ones. Setting
X1 =[R*], x2 = [AR*], X3 = [A2R*],
X4 = [A2R] and X5 = [AR]

The matrix form of the above state equations disturbed
by noise w is
0x/dt=Ax+Biw+B2u”
where x is the state vector.

4-2. Input u” and noises w.

Many statistical analysis with varying agonist
concentration reported that the  short period open
probability increased linearly as agonist concentration
and constancy of long period open probability beyond a
critical agonist concentration ( Colquhoun 1985, Jackson
1988, Sine 1990). We interpreted that Ach controls the
channel opening period because bi liganded channel state
evokes longer open duration than the mono-liganded one
does (Jackson 1988, Sine 1990). Moreover, Ach binding
converts the thermodynamically unstable channel state to
be stable open state, an internally stabilizing effect.
Therefore we regard [Ach] as a control input and set by a
matrix form u® weighted by rate constants such
that,

u1=-2Kki* [Ach], u2=ks* [Ach],
u4 =-2ki1 [Ach]  ---eeef (11)
w is the disturbance vector. We interpret agonist and
antagonist that compete the receptor sites with Ach as
noises to disturbe the effective Ach binding on the gating
channel.

y is the measured out put vector disturbed by the
noises

u3 = k2 [Ach]

y=Cx+Duw
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z is the regulated out put vector for evaluation, an
estimating vector.

z =Cix +Di2u” ---(13)

The matrix forms of Bi1, B2,C1 C2, D12 and D21 are
given in the table 2. The actual form of  estimating
vector z is given in Table 3.

Associating these, the system analyzed in the present
investigation is expressed by the standard gencralized
block diagram (Fig 4 ). G is the generalized plant with
two sets of inputs, exogenous omes Ww including
disturbances and control inputs u. G has two sets of out
puts, the measured outputs y and regulated onesz. K is
the controller to be designed. The realization of the transfer
matrix G is ( Zhou 1998)

A B B2
G=[C1 Du Di2 ] =]
C> Dz D22

G1i(s) Giz(s)
G21(s) G22(s)

We set D11 =D22 =0 for applying H2 control (
Sanche-Pena 1998).

4-3. Mathematical processes for H2 control

The performance of normal physiological Ach channel
gating under agonist and antagonist can be understood as
to elucidate the  undistrubed out put originated purely
from Ach binding and to minimize the influence on the
output by the noises. In the mathematical expression,
this can be interpreted as the magnitude of closed loop
transfer function from the disturbance to the regulated out
put is  minimized. Then, the present problem for
minimizing control of noises on the Ach channel gating
process is formalized to ( Zhou 1998 )

" To find a proper real rational controller K that
stabilizes G internally and minimizes the 2 norm
of the transfer matrix from noise w to
regulated out put z  II Tzw II2. "

P norm of the function x is defined as ( see also
APPENDIX 0)

n
I xIp=( SIxilpP)l/p
i=1
where vector x €C", and C" is an n dimensional
vector space over the complex field.
The exact form of the minimized 2 norm of the transfer
function Tzw is ( Zhou 1998 )
min II Tzw II = trace ( B1* X B1 ) + trace (R1 F2 Y F2*)
where F2=-R1(B2*X+D12*C1), R=D12*D12
We set following assumptions for the rpesent H2
problem ( Sanchez-Pena 1998 ).
1]. (A, B2) is stabilizable and ( C2, A) is detectable.
2]. ( A,B1) is stabilizable and ( C1, A)is detectable.
3]. C1* D12 =0 and Bi1 D21* =0: * denotes
complex conjugate transposed matrix.
4]. D12 has full column rank with D12* D12 =I and
D21 has full row rank with D21 D21* =I.
Assumption 1 is necessary for the system to be stabilizable
via output feed back ( see discuaaion ). Assumptions 1 and
2 together guarantee that the control and filtering Riccati
equations associated with the H2 problem admit positive
semi definite stabilizing solutions. Assumption 3 is the

Institute of Electronics, Infornmation, and Conmunication Engi neers

orthogonality property. Assumption 4 are the rank
assumptions which guarantee the H2 problem is non
singular. The conditions of Di2* Di2 =I and D21 D21*
=] are normalizing assumptions.

4-4. Riccati equation.
Solving the H2 problem, we set following two Riccati
equations ( Sanchez-Pena 1998)

X A+ATX -X B2T B2X +CiTCi1=0

eeeeeee(17)
YA+ ATY - Y C2T C2Y +BiTB1=0

Superscript T  indicates transposition. X , Y are
symmetric matrixes. = These equations are associated to
the following two Hamiltonian matrices H2 andJ2 that
characterizes the system,

A -B2B2* A* -G C2
H2 =[ 1,J2 = ] -(19,20)
-C1*C1 - A* -Bi1B1* -A

The mathematical processes for inducing these Riccati
equations (17,18) in relation to the Hamiltonians are
given in APPENDIX 2 as an extension of the present

'problem to the H infinite problem.

Under the assumptions 2 and 3, these matrices Hz, J
belong to the Riccati domain, H2, J2 €dom(RIC). This
in turn implies that the two Riccati equations ( 17, 18)
have unique positive definite solutions X = Ric(H2) =0
and Y =Ric(J2) =0 which are stabilizing. ( The definition
of function of Ric(H) is given in the APPENDIX ).

4-5. Estimator.
When the system states are available for feed back,
the system closed- loop poles can be assigned through a
constant feedback using the exact state as it is such
that u = F x. In the Ach channel gating system, however,
the system states are not always perfectly  accessible.
Because the Achchannel gating system has six different
states which are determined by the probabilistic
transitions. Hence, it is impossible to catch an exact entire
state of Ach channel gating system. All that are measured
are only the out put y and input u. Thus, the estimation of
the system states from given outputs y and inputs u is
necessary. This requires an observer system for
estimating the channel states instead of direct examination
of the channel states . This process is achieved by
setting the differential equations for the estimator x".
The optimal control input w” is then, given by (
Sanchez-Pena 1998 )
u*=F x* = -B2TX x*
This describes that the control input for the system derives
from the oberver based estimator. u” is determined
uniquely by the solutions of the two Riccati equations.
The differential equation for the estimated state x*
from the observer is

9x*ot= Ax"+ Bzu* + Y C2T(y - C2x")
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Fig3.Multiple states Ach channel

Ach Ach
Q ki Yu
C< S G —— > A:C
ks 2 ka
ao Bo a1l B a: |18
Ach Ach
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0< \\’ > AO <---~----¥e ......... > A0
ka* 2k2*

4-6. Computational forms,

u” canbe calculated to the form = f( X x* ) as a function
of products of X and x". Substituting this to equation
(10), we get

d x/dt=Ax +B2u” =g (x, Xx")

For the estimated state (the equation 22 ), substituting the
equation (21) to (22),
d x%ot=h( x", Xx", Yy, Yx")
Substituting the equation (12) to the equation (22)
climinates y from the above equation,
dxMot=J(x"Xx" Yx,Yx")

Since X and Y are determined uniquely by the two Riccati
equations 17, 18, we have two sets of differential

equations for the state x and estimator x* which
coefficients ( X, Y) were restricted by the Riccati

Fig 5-a
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equations. We have solved these four sets of equations
under the assumptions 1] to 4] by computational approach
with MATLAB. The solutions of X, Y were canceled
automatically when they do not satisfy those assumptions.

4. Results.

1. Temporal changes in the amounts
gating states under the H2 control.

Fig S-a shows the temporal changes in the amounts of
states, [O], [AO], [A20], [AC] and [A2C] per unit
membrane area during normalized unit ime under the H2
control. [A20] increased rapidly to fully open the
channel and [AO] less rapidly. Rapid decrease in [A2C]
indicates effective conversion of the inactivated state to
activated state [A20] when the Ach has operated.  Fig 5-
b compares the temporal changes of these species (
denoted by H2 ) to non H2 control ( denoted by -sd).
Non H2 controlled [A20] increased more rapidly than H2
controlled one.  H2 controlled [AO] increased more
rapidly than non H2 controlled one. Hz2 controlled [O]
decreased more gradually than non H2 controlled [O].
Hence, rapid increase was reduced as in [A20], gradual
increase was accelerated as in [AO] and decrease was
decelerated as in [O]. As aresult, the total behavior of the
system approached to an averaged state in which any
excessive change of the species  were averaged by the
changes in the controversial directions.

of Ach

5. Discussion.
5-1. H2 control.

5-1-a. Agonist and antagonist as  Gaussian noises.
At the normal physiological state, Ach reasonable well
achieves the role of transmitter across_the synaptic cleft

Fig 5-b
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Table 4. Rate constants

1. Opening rate constants.
1-1. B2 (Biliganded channel opening rate )
25000/s ( Auerbach 1993), (Colquhoun 1985),
45000/s. ( Sine 1990)
31000/s (Colquhoun and Sakman 1985 )
1700- 56000 /s.(Auerbach and Lingel 1987)
25000/s. ( Land (1981))
1-2. A1 ( Mono liganded channel opening rate )
1100 /s ( Jackson 1988),
1-3. Bo ( Vacant form channel opening rate
Spontaneous opening )
28000/s, B / Bo =10*(Jackson 1988)
2. Closing rate constants.
2-1. 2 (Biliganded closing rate)
15000/s (Sine 1990)
1320/s ( Auerbach and Lingel 1987 )
2-2. a 1( Mono liganded closing rate )
900 /s ( Jackson 1988 ),
7800 /s( Kidokoro and Rohrbough (1990)
6520/s ( Clquhoun and Sakmann 1985).
2-3. 0 ( Spontaneous closing rate )
5000/s ( Jackson 1988 ).
3. B2/a2 : 5.3(Sine 1990),
43 ( Colquhoun and Sakmann 1985),
: 20 ( Auerbach and Lingle 1987 ),
:15 (Sine and Steinbacj 1986, 1987).
4-a. k+1 ( Closed tansition )
6.0 107 /M/s ( Sine 1990).
8.0 107 /M/s ( Colughoun and Ogden 1988)
1.0 107 /M/s ( Sine Steinbach 1987)
1.3-5.0 108 M/s ( Auerbach and Lingel 1987)
4-b. ks« ( Open tansition )
1.5 103 /M/s (Jackson 1988).
5-a. k+2 ( Closed transition )
1.0 108 M/s ( Sine 1990, Sine Steinbach 1987).
2.9 108 /M/s ( Auerbachand Lingel 1987)
8.0 107 /M/s ( Colughoun and Ogden 1988 )
5-b. k+2* ( Open transition )
5.0 10% /M/s (Jackson 1988)
1.6 108 /M/s ( Colquhoun 1985)
6-a. k2 ( closed transition )
40000- 70000/s .( Sine 1990).
" 16300/s ( Colquhoun & Sakman 1985),
13000/s ( Auerbach 1987), (Sine 1986 )
1000/s ( Sine Steinbacjih 1986)
28000/s - 30000 /s( Auerbach 1993 ).

6-b . k2* (Open transition )
8.5 103 /s(Jackson 1988).
9.6 103 /s( Colquhoun 1985).
7-a. k-1 (closed transition )
k-2/ 1000 (Sine 1990).
500/s (.Sine and Steinbach 1987 )
7-b. k-1* ( Open transition )
0.0375 10 /s (Jackson 1988 )
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although there are lots of agonists and antagonists that
compete the binding sites. But on average, Ach binding is
well accomplished under these distrubances without severe
deterioraiton. Hence, the agonist and antagonist can be
regarded as an averaged zero Gaussian white noises. The
agonists and antagonists can bind to the Ach binding sites
at any channel state whether closed or opened ( Colughoun
1985). Agonist acts by all or non fashion without
provoking intemediate sub-conductance state. Hence, these
actions can be regarded as channel non specific unit
impulse input. The macroscopic accesses of the agonist
and antagonist to Ach receptors are dominated by fluid
dynamical and diffusion processes which are not
molecular specific  but  non specific  averaged
processes.  This treatment of agonist actions is
consistent to the concept of H2 control about the

disturbance noise.  Controlling such situation by the
closed loop transfer function can be achieved by the H2
control principle, namely to minimize the inflfuences of
noises on the out puts ( Sabchez 1998 ). The present
analysis attend H2 rather than H infinite control because
2-norm concerns the disturbances with unit intensity white
Gaussian processes while the infinite norm treates the
disturbances with unknown spectra.

5-1-b.  Intemnally stabilizing effects of Ach as a control
input.

Without Ach, the channel states are considerably
unsteady. The gating system can not transit to any
stable open state. Under the existence of Ach, however, it
can easily bind to the open state. Once Ach has bound,
the molecular conformation of the Ach channel is converted
to be stable. The thermodynamically fluctuation of the Ach
channel state  is then, driven to open the channel.  The
open state can persist to have sufficient gating currents.
Hence, Ach has an internally stabilizing effects which is
consistent to the internally stabilizign input controller of the
H?2 problem.

6. Conclusion.

We proposed a mathematical method to evaluate the
performance of Ach that compete the channel receptor
sites with agonists and antagonist while Ach internally
stabilizes the channel state on the basis of H2 control theory.
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I nf ormati on,

Then, H € dom(Ric) if (A,B) is stabilizable and
A-jolI B
( ]
C D
has full-column rank forall ¢y. Furthermore, X = Ric(H)
2 0iff H €dom(Ric) and Ker(X) =0 if and only if
( DL*C, A B R!1D*C) has no stable
unobservable modes. Here
Ker(X) :kemel (ornull) space of
X.={x€Fr: Ax=0}
D_L is the orthogonal complement of D.
Comparing this form to A15 makes one to understand
that the present method can easily be extended to an H
infinite problem.

For Hoo problem.

Step 1. Corollary (Zhou 1998)  Let y >0,
AB
G= [--+---] ERH, - (A-14)
CD
and
A+ BRI D*C BR'!B*
H= [ ] -+(A-15)

-C*(1+DRID*)C <A+ BR'! D*O)*
where R= 121 -D*D

Then, the condition that the infinite norm of the function
space G

NGl < 7
is equivalent to ¢ (D) < y where ¢ denotes the largest
singular values of matrix D and there exists an X>0 such

X(A+BR1ID*C) +(A+BR!D*C)* X
+XBR1B* X + C*(1+ DR1D*) C< 0 --(A-17)

By this corollary, there exists an

X1 Xi12
X"=1 ) B ¢ —— (A-18)
X12* X2

such that
X7 (Ac+ BcR! Dc* Ce) + (Ac + Bc R'1 De* Co)* X~
+ X" BcR1Be* X~ + Ce*R™1 Cec < 0.

After  much algebraic manipulation,we arrive to the
following Lemma.

Step 2. Lemma (Zhou 1998). There exists anr th -
ordet admissible controller such that a infinite norm of the
closed loop transfer function from the input noise w to
out put z satisfies
OTzw o < 7

when the following three conditions hold

1. There exists a Y1 > 0 such that
AY1 + Y1A* + Y1 C1* C1 Yi/7?2
+B1B1*- v2B2B2* <0

and Conmuni cati on Engi neers

2. There exists an X1 > 0 such that
X1A + A*X1 +X1B1 Bi* X1/r2
+Ci1*C1- 72C2* C2<0

(A-20-b)
3. Inequality condition or the rank condition

X1/y In
[ ] =0
In Yi/y

Xi/r In

K
In Yi/y

rank [ n+r

where In is n Xn identity matrix.

Step 3. Theorem (Zhou 1998 )

Let R =0 and suppose ( A,R) is controllable and there
isan X = X* such that

AX):=XA + A*X + XRX + Q<0 --mmeevq (A-21)
Then, there exists a solution X. > X to the Riccati equation

X+ A+ A* X+ + X+ R X+ + Q =O ————— ( A-22)

such that A +R X, is anti stable.
step 2, by setting ( Zhou 1998)

In this theorem with

R=B1*B1 /2
we have (A-23)
XA+ A*X+X B1*B1X/r?

and Q=C1*C1- y2C2* C2,

+CI*CL - 72C2*C2=0  eeoeeemn (A24)
By setting R=C1* C1/72 and Q=B1*Bi- y2B2* B2

AY + YA*+Y C1*Cl/72%Y

+B1*Bl - v2B2*B2=0 = ceeeemees (A-25)

this is identical that
O Tzw [l < 7

Hence we arrive the final lemma. By putting
Xoo = ‘)’ZY'I , Yoo = ‘)’ZX'-‘l

Step 4. Lemma (Zhou 1998)
There exists an admissible controller such that II Tzw II
e < 7 only if the following three conditions hold.
1. There exist a stabilizing solution Xos >0 to
X0 A + A*Xoo + Xoo ( B1*B1 /72

- B2*B2)Xew +C1*C1= 0 mememeee( A-27-2)
2. There exist a stabilizing solution Yoo >0 to
AYo + Yo A* +Yoo( C1* C1/v?
-C2*C2) Yo +B1*Bi=0  -meeeem- -(A-27-b)

3. Matrix inequality or the upper limit condition for the
singular value.
e Ylo In
[ ] >0 or p( XYoo )< 72
In Xl  —meemenen (A-27-c)

The last condition means that the singular value of the
product of Xeo and Yoo is smaller than the square of 7.
The present problem can be easily be extended to H infinite
problem by solving the system equations which
coefficients ( Xeco Yeo ) are determined by the two Riccati
equations ( A27-a and A27- b ) under the constraint of A
27-c.
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APPENDIX 0. Definition of the

norm of functional space.

For stable Laplace transform matrices G(s) € C ™ |
p = min { m,n }, the H2 and the H oo infinite norm in
terms of the frequency- dependent singular values are

® p

NGI=[§ = (oifw))? dw]}? - (A-1)
-00 i=1

IIGUw=sup g GGw)) :sup indicates the least
w

upper bound

gi is the singular values of arank r matrix of
A €Cma  They are the non-negative square-roots of the
eigen values of A* A ordered such that

cl=z ¢g2Z 03 = o¢i 2==20p
p = min { m,n}

APPENDIX 1. Definitions for the
Riccati operator.(Zhou 1998)

dom(Ric) X is uniquely determined by Hamiltonian
matrix H ( H—X is a function denoted by Ric ). The
domain of Ric denoted by dom(Ric) is taken to  be
consisted of Hamiltonian matrices H with two properties:
1). H has no eigen values on the imaginary axis ( the
stability property ) and 2). the two sub spaces

x (H) and Im[0 I]T (A4
are complementary ( the complementarity property ). %
_(H) is the stable n-dimensional invariant spectral sub
space of H which corresponds to eigen values of H inRe
s < 0 ( Hamiltonian matrix H has no eigen values on the
imaginary axis and having n eigen values " in open left half
plane). Im A is the image orrange of matrix A

ImA:={yePm: y=Ax,x EF®} —ereev (A-5)
Let qi, i=1,2,,---n denote the columns of a matrix Q €
[Fmxn : Then

Im Q = span {q1,q2, g3,---,qn }
={q=q1q1 + @2 @2+ @3 q3-—+an gn:@¢n<F }

where B is either R ( the real scalar field ) or C ( the
complex scalar field ) and [¥nis the n dimensional vector
field over [F. The solution of the Riccati equation
characterized by the Hamiltonian matrices is called
stabilizing solution and expressed by X = Ric (H).

APPENDIX 2. Hoo control.

Step 0. Staring from H2 problem, the assumptions 2, 3

and 4 in the Method can be relaxedto  ( Sanchez-Pena
1998).

Institute of Electronics, Infornmation, and Conmunication Engi neers

1. (A, B2) is stabilizable and ( C2, A) is detectable.

A-jwl B2

2. ] has full column rank for all w.
C1 D12
A-jowl Bi

3. ] has full row rank for all w.
C2 D21

4. Di2 full columnrank and D21 fulltow rank which
is equal to R=D12*Di12 >0 and S =D21 D21* >0.
The second condition indicates that Gi2(s) ( equation 15)
does mnot have zero on the imaginary axis. The third
condition indicates that G21(s) ( equation 15) does not have
zero on the imaginary axis. The second and the third
assumptions together with the first one guarantee that the
two Hamiltonian matrices associated with the present H2
problem belong to the Riccati functional domain,
dom(Ric) ( see APPENDIX 1 ). By the theory of
stabilizing solution and Riccati operator ( see following
supplement ), the Hamiltonian matrix for state X (
X=Ric(H2) ) is (Sanchez-Pena 1998 ) ( Zhou 1998 ).

_ A -B2R'1Di2* C1 -B2R1Ba*
Ha =] )
-C1*(I-Di2RID1z*)C1 - (A-B2R1 Di2* C1)*

Similarly, the first and the third assumptions are necessary
and sufficient for J2 € dom(Ric), the specified Hamiltonian
matrix for observer Y (Y=Ric(J2)) is ( Sanchez-Pena
1998)

(A-B1D21*S1 C2)* -C2* S
2= J----(A-8)
-B1 (I-D21*S1D21)B1* -(A-B1Da*S1C2)

where R=D12*D12 >0, S=D21Dz21*> 0. Using the
normalizing conditions

Di2* D12 = D21 D21* =1, -~(A-9)

By the solutions X and Y of the two Riccati equations
which are uniquely determined by above two
Hamiltonians, the observer can be expressed

A+B2F2+12C2 12
Ko(s) =| + ]
- F2 0

(A-10)

where Fz2 = - R1(Bz2* X2 + D12* C1),
L2 =-(Y2Cz* +B1D21*) S

This expression is an observer based - system. Bi1 and
D21 corresponds to the system noise and observed noise
in the Kalman filter system.

# Supplement ( Zhou 1998)
Suppose D has full column rank and denote R = D*D >0.
Let H have the form for the system described by G(s) in
Fig 4.

A 0 B
H= | 1 - IRI[D*C B*]
-C*C -A* -C*D
A -BRID* C -BR1B*
= A-11)

-C*(I-DRID*)C  -(A-BRID*Q)*
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