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We introduce a theoretical method for analyzing the thermo dynamical behavior of multi non
spherical particle system composed of a single kind. We explained the collision integral term
constituting the Boltzmann equation. We defining the translational rotational velocities, energies and
utilizing the collision vectors and principal inertial moments. By converting the variables,
transformation, we the collision integrals are deduced to be analytic one. Applying the rotational
matrix transformation and supporting function, the collision integral can be simplified to those of
the principal radius of curvature of the surface of the colliding particles. We computed the shear,
bulk viscosity and thermal conductivity of the sphere-cylindrical particles. The present method we
introduced will be available for evaluating the systemic behavior of a single kind bio particles.

Boltzmann equation, Translation, Rotatina, Principal inertial moment, Collisoin integral.

B—HOAEMRDFITBVT 2 EEREH BT

LS, L BOE A

JENNTHFAMRE 4 - 5 JENEERER S R £
(#350166-65-2111, N2411) Email  hirayama@asahikawa-med.ac.jp
" R KRR TR R
% * EHAER A2

BB OLAEET 2EERDTROBE 282012 T 57~ %, Muckenfuss,
Curtiss & V1B L 7=, FEERIREL FOOEENESR EF A L. R O¥EME( shear  viscosity, bulk
viscosity ), FROMREME  thermal conductivity ZFHE Lz, R YL ABRICETN S
WM 2t H T BB 2N L, BTOME, EiEEHmE, IR F—-&fffEy o
8, EEMEE-AD MR ERRNWTERL A, HEEEDIIEL ODKE K, LTV
FENTRD 5N B BRETEIT U7, WEEOWEICET IO TIIROEET R a4
A%, BEUY Curtiss (1956) ¢  Supporting function Z [ L T. K TFREOFZE
EONMIBEEE L TRIRTEL,  AHBEERBENLIRTEOEELNAE TH DR FIio
ISHLT, RO ROBMEZEEEFHE LT, ARRIIER OB — LK T ORS BN
E—DORELTHIITEHESIATERTH D,

PV HBR. Wi, EEEBRE, TR F— EEET— A N MO N
J— 9 —_—

NI | -El ectronic Library Service



1. Introduction.

The ultimate process of biochemical and bio molecular
reaction start  from the physical encounter of the participant
molecules. From the thermodaynamical stand point,  the
classical  mechanical approach is still available for
cvaluating the total behaviors of the system as a whole
from statistical analysis. For these problems, Curtis and
Muckenfuss have challenged to analyze the kinetic behavior
of the dilute solution ( mainly forthe non uniform Gas ).
Such analysis was stared from Chapman (1916, 17, 22, 35)
and Enskog (1922) by solving the Boltzmann equations for
Dilute and Dense Gas on the basis of rigorous mathematical
and physical analysis. Curtis and Muckenfuss (J. Chemical
Physics. vol 26. No 6.pp 1619, 1957 ) applied Chapmann's
method for analysis of thermo dynamical and statistical
behaviors of non spherical molecules. Particularly they
confined attention for the  Eulerian components and
inertial, angular moments. In the present technical report,
we introduce their method for application of collision theory
to non spherical molecules of single kind.

2. Mathematical method.

“brace expressions,”’
{ Sant ) W(’); Smm',(’) W(')}

" 8n f f ny* Sinﬁl[l:sl. P W05 Sy @ W10 o

5 L0 W03 S e ® Wi T [deides. - (09)

The Spn @ (and S, nn ) and Sz, nar (’)) are products of
Sonine polynomials depending on the index » defined
by Egs. (4-12) to (4-18) of reference 1, and the W
(and W;® and W) are certain vectors and tensors
also depending on the index » defined by Eq. (4-4)
of reference 1. The integrations on the right are over
- all orientations of both molecules, #,* is the number
density of molecules of orientation ez and By is the
second Eulerian angle of the rotation @;. The “square
bracket integrals” in the integrand are defined by

[G; mu:n;m* [+ frer@r-ny

X /19 £, (k-8)S (K)dkdvidordvados.  (0-10)

This integration is over all collisions of molecules of

" specified orientations, «; and «y. Here, k is the unit
vector normal to the plane of contact of the collision,
vi and v are the linear velocities, and @, and w; the
angular velocities of the colliding molecules. The *
indicates the transpose of a tensor, and the prime on
H’ indicates the value before a collision in which the
unprimed values are the values after the collision. Also,
S(k) and g are the cross section of the collision and the
_relative velocity of the points of contact.

1. REDUCTION OF THE SQUARE BRACKET INTEGRALS

The integrands of the various square bracket inte-
grals, defined by Eq. (0-10), depend upon the dynamics
of the collisions as expressed by the dependence of the
primed variables on the unprimed variables. For con-
venience in describing this dependence, we define
several new variables. First, we define G as the velocity
of the center of mass of the pair of colliding molecules,
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G=3(Vo+Vy) (1-1)
and g as the relative velocity of the pair
g=V2'—V1. (1—2)
The correspondmg dimensionless variables are then
m
G={— G = ( ) g
kT i 4kT

Wi=(G—v)7 3 - (1-5) Wao=(8+7)/ vZ (1-6)
We now define the r‘vmensmnless vector related to the
change in hnF- .r momentum of o1 .. the molecules,

and from the conservation of linear momentum

Wz/=Wz—"\Gl€. (1-9)
Then from Egs. (1-3) and (4), we find that
@=@, (1-10) v=y—2x (1-11)

The vector x may be evaluated from considerations

of the dynamics of the binary collisions. It may be

. i m \}
is the dimensionless relative veloc1ty of the pomts of
contact. and

E_H_EGMH e [olxk]+—|:vz><k] ‘Y- [02>§k3

In these expressions, k is a unit vector nicrmal to the
plane of contact of the collision, o is the radius vector
from the center of molecule 4 to the point of contact,
u; s the reciprocal of the moment of inertia tensor of
molecule ¢ in'the space fixed coordinate system, a
function of the orientation of the molecule, and

g=35—go - (1-15)
go= (01X 01)— (02X a3). (1-16)

It is also convenient to define a dimensionless relative
angular velocity,

where

T\ Ig)ve '
w'-=————-( v 3) Q." (1"17)
(2kT)}

_where T, Ty, and I’y are the principal moments of

inertia of a molecule. Then the expressions for the
angular momenta before the collision in terms of those

‘ I1"W1’_’= l1 'W1+ (Zm)*(rxrﬂ‘a)I/e[UlXK], (1—18)
Iz 'Wz'= lz'Wz— (Zm)*(rlrzra)lle[ﬂ'zx K]. (1-19)

The dimensionless translational kinetic energies [see
Eq. (0-11)] before a collision are obtained from Egs.
(1-8) and (1-9), and are

61(‘)’= 61(‘)+2V7(K-W1)+2K2, (1-20)
éz(‘)/v:‘ Ez(t)— 2\@(1( W2)+2K2 (1-21)
In a similar manner, one finds from Eqgs. (1-18) and
(1-19) that
2(2m)}
(DD Ip)ve
+2mLe:Xx][o1X ] w1, (1-22)

€=+ wi-[o1Xx]
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€ =

= g (1) —

2(2m)?}
(I‘1P2Pa)1_/°w2 ‘[o2X x,]
’ +2m[0’2>< ‘K][O’zx 'K]' Y. (1 23) '

: con51der the sum of the square bracket
integrals appearing in the expression for the viscosity,
Eq. (0-24). From the definition, Eq. (0-10), and the
symmetry relation® it is seen that - -

[Wy, W1]12+[:W1; Wyl

; |
e — e’ wl_w :
znnf [ owi—wy

X (WY Wy~ Wi W) 10,0 (k- g)

XS (k)dkdvidadvades.  (1-27)
Then introducing the equilibrium distribution functions
and the dimensionless velocity variables we find that

[Wi; Wi+ Wi Wl

-z kT)f frowr-w

><'< W'+ Wy~ Wi W))]
Xexp(— e, — e — "V — ™M) (k- T)
XS (k)dkdW:dWodwidws,  (1-28)

.The quantity in brackets, in the integrand may be
expressed in terms of the unprimed variables and the
vector k by means of Egs. (1-4), (1- 8), and (1-9) and
we find that

(Wi'— Wy): (W + Wy~ W,— W,)

42
= ——3-(1(-7) (K-Wx)“‘4\/j‘<2('f‘wl)

16v2 16
K2 (K ' W1) —-—3—x2(1c

16
-‘r)—i--gx‘. (1-29)

~We now change integration variables from W; and W,
to® and . The Jacobian of the transformation is unity
and

104 6200 = @22, (1-30)

Thus after integration over @,
[Wl; W1]12+[W1; Wz]iz

- —f—i—)i [ e

= (8/3) (k- 7) + ] exp(— ¥ — el — &)

X (k- T)S(k)dkdydwidw,. (1-31)
It is convenient to define the following functions of
k and the orientation of both molecules:

T = f (k) (o oro) "
Xexp(—vt— e —e)dydwidw,, (1-32
o= (m/4kT)}g,. (1-33)
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LW1, Wilet+[ Wi, Wz]xz“—“‘( )f S (k)dk(1-34)

[E“(J 30 =3 O++37 10— T 03 V) + 3£ (1— 8£4+-4£) T 50

Bt 1 G o 32E+20€:“)Ju<°)+1&“(3 4SE+40£2)J32<°’-

—32(1— 32-‘3-1-40&'2)-723(‘”—323(2 59] 14“’)—32‘-7 os‘°)_l
2. INTEGRATION OVER THE VELOCITIES

Let us now consider the six sets of integrals over the
velocities, Jy ", K, ) L, M, 1) N, () Q0.
We consider first the integration over y. In all six cases
this involves the evaluation of the integral,

Lo= [ Geayrr exp(—r)ay, key<koro (D)

The range of integration is restricted to those values of 7
for which_the impulse is positive. This integral
depends parametrically on vector k and scalar (k « yo ).
Since the integral is a scalar, it depends only on the square
of the single vector,k which is unity. So integral I, ®can
be expressed as a function of the single scalar, (k « y0).
To obtain (k » 7 0) we evaluate by using coordinate

systera in which k lies along the positive z-axis. Then

keyy po o0 .
I'.(')':f f f vy (y+ydtrd)r
-0 00 Y 0

4 Xexp(—yli—v—v&)dvidyodvs, (2-2)
.and on carrying out the integration we find that
k.7
LO= f " exp(—a?)ds, (2-3)

—c0

. K.y

I,We=q f 2 (1427 exp(-—x“)dx = I,(o)+I,+2(o)_(2-4)
Lo carry out the integration over w; and ws, we

change variables to the new set of six,

" W lows

= =1, =
(T4Tolg)} &9

Yo =wy (0:XK), i=1,2 (2-6)

eW=w; (e;X[o:Xk]). i=1,2.  (2-7)

Hence let us consider the Jacobian
Let a;=o;Xk, i=1,2 (2-8)
bi=0¢:X[e:Xk], c;=a;Xb;. (2-10)

Then clearly the Jacobian of the transformation from
Wit, Wiz, Wiz t0 €7, 409, o is

3 (e v, ()

d (wi;,wfz,wiz)

Ci I;'W"
(DTTy)é

0 evaluate this expression in terms of the new vari-
ables, it is necessary to solve Egs. (2-5), (2-6), and
(2-7) for the components of w; in terms.of the new
variables. That

(2-11)

NI (T BELY
0= (2-12)
c;- i Cs
where
Si=vPb;— pMa; (2-13)
ind

4 2= ;T T35 (ci- 1 )= (Talal's) (Si- we-S) '(-2_14)
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First, since

a;¢;=0 (2-15)

it follows on direct substitution that the solution, Eq.
(2-12), satisfies Eq. (2-6). Also since

b;-c;=0 (2-17) biX8i= ey (2'18)
it follows on direct substitution that Eq. (2-7) is also

satisfied. The proof that Eq. (2-5) is also satisfied
depends upon the identity

Lo [SaX (4 1) J= (Il (- S) X s, (2-19)

which may be proved by expansion in terms of com-
ponents. It then follows upon direct substitution of
Eq. (2-12) into Eq. (2-5) and use of known vector
identities that Eq. (2-5) is also satisfied. Thus Eq.
(2-12) gives w; in terms of the new variables.

Upon substitution of Eq. (2-12) into Eq. (2-11), we
find that the Jacobian of the transformation is

Wm0 24,
d(wiwinwiy)  (DyDalg)t

The range of integration of w; is from — o to 4 on
each of the three components. It may be shown that
the equivalent range of integration of the new variables
consists of those values for which 42, Eq. (2-14), is
positive. The transformation, however, is two to one,
so that it is necessary to integrate over this range of the
new variables twice. This is equivalent to using as the
Jacobian a value half that given by Eq. (2-20).

- Since the integrands in which we are interested are
independent of ¢, we now consider the Integral,

1
(D)} f Zdp,
A ,

1

From the definition, Eq. (2-14), it follows that 4 ¢ is
quadratic in ‘9 and may be written in the form

(2-20)

(2-21)

A2=(PiTols) (ai gir23) (@i — o D) (oD — V) (2-22)
where (9 and ¢_(? are the upper and lower roots of

the quadratic. Thus the integral of Eq. (2-21) is
1 s det®

a;XS;=v,%c;, (2-16)

(03T Vo (s i-ad ), (00— o)} (ot — p_(N)

This integral is a standard integral, 2-23)
do® ™ y
I\TyT )%f — (2
( 14243 A{ (I‘lI‘QPa)lIs(ai'vt"af)}

From Eq. (2-14) it is clear that the roots are

. a;-gib; .
R R R
a; Py g
N 1 [[\ai‘k‘i‘bi)z—(ai'U'-z'ai)(bi'l}i‘b.:‘):]")'o(i)g]
a; us-a; +(P1I’2P3)“4(ai'yi'ai)(ci'li’ci)fi(')
C;'I."Ci
(aipeb) = (a;-pi-a) (b psby)= —
(8) = ‘PIP2P3
ok ORIt "
(aipibi)yok LT} (as wir 2 e —y (7
(TI'o05)3
as i (2-27)

(2-25)
(2-26)

Yot/ (TTTs) H(as uie a9) (2-28)
to infinity and that then the integration over 7 o) is taken
from -00 to + 0o.

7= (T2l (a; us- 2k (2-29)

From Eq(1-32), the expression for I, (9 Eq 92-3) and the
result of integration over ¢ VEq(2-24), it follows that

7r3 W 0 L0 o0 k.o
Ty @ m— f f f @ (k- o)’
MN2 VoV w0902/ qv o2 /pe/
exp(—a?— &)= ;M) dxde;Vde; Wy Ddy,®  (2-30)
“Then after integration over ¢; (- and ¢ we find that

7['3 0 ® kevyo
Jw’ M= f f f x’(k . 'ro)y,
NN2 vVewVenV—

( " Yo* yg@* .
€ — Y e e
P ne g ] (9.31)

From the definitions, Egs. (1-33) and (2-6), it follows
() o oixk
)

B (TaFog)ue

(m)}
TV e

+ (4:1) i("1— 2) (kX wo). (2-36)

Now since we are considering only the special case in
which wo=0, we transform to nev .cordinates defined

o (%)ioo- (o:xk) (2-35)

k"{o (’Yo(-”—’)’o(z))

1 Yo® —7,o® N2y @492y @
w=—(k.yo)= (2-37) y=——---———(2-38)
7 (0Pt nma(ni+n2?)}
(m)* (2412}
\72/ @rrgw
mutnmaw —n2u+nmaw
oyo(l) =._1—_1_2.’ (2_39) 'YO<2) = : (2'40)
(7712-|'1722)i (7)12‘*‘?79.2)i
and the Jacobian of the transformation is
3 (vo®,10®)
——=n1 (2-41)
3 (u,)

The integrals of Eqgs. (2-31) to (2-34) are then of the

form
+0 et aqu
7? f f f (  )dxdudv.

The integral over v may thus be carried out next.
"The integrals over v are complete integrals and may
be carried out explicitly. The results are

(2-42)

40 Jnu
Syt @ = 2n"f f x'w”’ exp(— 22— u?)dxdu, (2-43)

Then as a final change of variables we let

x=r Cosd, (249)
u=r sind, (2-50)

The Jacobian of the transformation is clearly
3 (x,u)/9(r,8)=r. (2-51)
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The limits of integration on 7 are from 0 to o, while ¢ »
goes from ¢, to do-+m where

tando=1/7. (2-52)

We now define

dotx
Arv' = f
v

0

cos*d sin”' 8dd. (2-53)

Then after carrying out the integration over r we find
that

Jy,r 0= %7(‘1/2 ’II‘ ("“"’"+ 1) 'y (2-54)

From the definition of £, Eq. (1-14), and the defini-
tions of this section, it follows that

1 m(niP+ns?)

£ 2(II.ry)t

E = Sinzt%.

=141t (2-60)

Thus
(2-61)

The evaluation of the A,» may be carried out by
straightforward methods.

Then from Eq. (1-42) we find that

[Sil(el“))wl; S}l(Gx(')>Wx]12 +[S;l(€1(‘))W1; S;l(ézm)Wz:}u

S
._-—-( ) f 81— 9S(k)dk +antisymmetric terms

and from Eq. (1-48) that (2:65)
[S Y a™)Wy; 591(61('))W1]12+[5;1(€1('))W1; St () Wali

S(5) flesv oo 2

27
Mg (3-__5)]5(1()&( ~+antisymmetric terms.
(TieTg)t (2-66)
3. THE INTEGRATION OVER k AND THE
ORIFNTATIONS

We now consider the final integrations to be per-
formed in the evaluation of the transport coeflicients.
From Eq. (0-9) and the definition of #,¥, it follows that
if woe= 0,

(Saw @ WO S WO =

[[Sl, we @ W15 S s @ W0 1 ]
f f +LS1 nw @ W15 8o, e @ W, 7]y,
(3-1)

The square brackets have been reduced to an integra-
tion over k. Thus the problem is reduced to an eight-
fold integration over the two angles (&,¢) of k and the
six Eulerian angles (as, 8:, v+) specifying the orienta-
tions of the two molecules.

To carry out the eightfold integration, we change
variables to a new set of angles. Let Ky;, Ri;W, and
R;;® be the elements of rotation matrices associated
with the setsof angles (¢, ¢, 0), (a1, B1,71),and (a2, B2,72),
respeétively. We then define the angles ¢/, ¢y, ¢4/, and
@2’ by the relations

(8x%)?

s'mﬁ1 Sinﬁgd(ndaz.

3;1) = z] K:URU( )

Z: KaJRu( )

(3-2)

2= (3-3)

S(k)=RW' W’ —

where the K;;®" and K,;®’ are elements of rotation
matrices. associated with the rotations (¢, &/, 0)
and (o, 954 0), respectively. Geometrically, the angles
¢’ and ¢, are the polar angles of the point of contact in
a-coordinate system fixed in body 1. Similar considera-
tions apply to ¥ and ¢,’. We next define the angle ¢

- by the relations

siny=Qu®Qx®— Q02 V0u®, (3-4)
cosy=QuPQu D +Q51 M0, (3-5)
where
QiiM=3 K" RuMK g, (3-6)
ot
QuP=2 Kp® Ru®Ka. (3-7)

k,

The angle ¢ is an azimuthal angle which, along with
¢, ¢, 8¢, and ¢/, specifies the relative orientation
of the two bodies.

‘We now consider a change of variables from the set

9, ¢, a1, By, 11 (3*8)
to the set
8, o, 8, of, ¥ (3-9)
(3,10 00" W) sind sinB; (3-10)
= : 3-10
8(%,0,01,61,71) sind,’ sind,’

Thus from Eq. (2-62) and Eq. (3-1), it follows that

(W; W} “5?5;2(“‘) f B(5—28)S(K) sindy’

X simh smﬂ 2d‘&91ld go:,ldl’z,d ;Ozld!//dazdﬁ 2d’)/2, (3-1 1)

with similar expressions applying to the other brace
expressions.

In all of the integrals of the type given in the last
equation the integrand is independent of the Eulerian
angles g, B2, and 2. Thus we can carry out the inte-
gration over these angles and obtain,

{W; W}—isz(—) fs*(s 26)S (k)

XSlIllg'l Slndzldt’;’d¢1/d‘l}zld§02’d¢/. (3-1 2)

The shape of the rigid ovaloids is conveniently
described by means of the supporting functions,}
HWD (8, 0,') and H® (34, ¢,"). Since the two bodies are
assumed to be identical the two functions must be of
the same functional form. Furthermore, since the

center of mass is assumed to be a center of symmetry
the function must be of such a form that

HO(r—%, o' =m)=HD (S, 1), (3-13)

In terms of the supporting functions and the present
coordinates, it can be shown? that the element of
surface is

SWSW RO TE@) — @)
Fcos (RW T 4T W’ RB’ — 251 g2)')
+-sinf (R W' RE - TO @' 428 W' g@")
+2 siny cosy[ SV (RPY — @)

— ((R(l)’._ T(l)')g(z)'], (3_14)
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PH®
R A (3-15)
38,
9 /1 eH®
8(%)’: ( )’ (3_16)
99, \sin¥,’ Aoy
_ cosd/ OH® 1 @E®
g"(t)’=H(i)J‘ ! (3__17)

Si.l’ll?." 30{, IS]'.DQI’." 30."’2-

The integrands in which we are interested depend on
the angle  only through the element of surface, Eq.
(3-14). Thus we integrate S(k) over y to obtain

(R TW L g
[s@as=2x| +300r troymersren |, @19
' — g _g@g@’
The remaining portion of the integraﬁds depend upon
the remaining angles through the 5;, Eq. (2-29), both

explicitly and through ¢, Eq. (2-60).
in terms of the supporting function,

) 2488
(o1Xk);=— 2 Ky 'R0
' i
1 oW
WR.WD (3
oy say 5 LR, (319)
aH®
(o:Xk) = — 2 Ky ®'R;®
l}zl i
1 0g®

o’ @ ~ 2 Kyy®'R;:®. (3-20)
INV2 2§

The second expression applies only if the center of mass
is a center of symmetry so that the supporting function
satisfies the identity, Eq. (3-13). If the body fixed
-system is such that the moment of inertia tensor is
diagonal (principal axes) then

2 Ry Ouy MR =—,
kil Ir;

$

(3-21)
‘From Eq. (2-29) it is seen that
‘ 7= (01 0T3) 2 (o, XK auwr (0. XK. (3-22)

Py -

oH® . 2 (I‘1I‘zI‘a)* :

2 (3-23)
Ty

7" :E Kz"(l')' —

a9, sing,’ d¢,’
From Egs. (3-12) and (3-18), it follows that

-2 o

(RO'TWY — grgar)
X| 4 (@@ger_gerger
FL(RW 70 (RO T @)
Xsindy! sindy'ddy/dor'ddy'dpy.

(aH(v) 1
1

{W;

Let g1 and g»(® be the principal radii of curvature of
the surface of body 4. Then it may be shown that

and Conmuni cati on Engi neers

RO T — S = gy (D ()
RV = gy (D gy,
(DT ~sW'8() sind /a8 dp! =dS;

is an element of surface of the ovaloid. Thus

(W; wwé(%)i [o6-20
1

1

]
1
aWg® g @g,® ‘
dS1dS;

171 1 1 1
+—( F— ( t
2 g0 g0/ \g®  g@

4. THE SPHEROCYLINDICAL MODEL

The spherocylindrical model and the coordinates used
to parameterize the surface are indicated in Fig. 1. The
axis of the cylinder is an axis of symmetry of the
body. The cylinder is of length L and of radius a.

L >
V4

. SN N
) i
3 Z
8 9/ z
1 $. (] .
Q / ’ /<
” rl f’

Y

A point on the cylinder is described by the coor-
dinate z [~ (L/2) <2< (L/2)] and the azimuthal angle
¢(0<9<2m). A point on the hemispherical caps is
described by the polar angle #(0<#<r/2, on the
upper cap, and (r/2) <¢ <, on the lower cap) and the
azimuthal angle ¢(0< < 27).

The radius vector to a point on the surface in the
body fixed coordinate system is

R S

N

o= (a cosp, asing, z), cylindrical section

o=[a sind cosp, a sind sing, £ (L/2)+a cos¥], (4-1)
spherical caps
and the unit normal to the surface is
k=(cosg, sing, 0), cylindrical section
( @, s ) s CY ( 4_2)

k= (cosy sind, sing sind, cos#). spherical caps

Thus

(oXk)=(—zsing, z cosp, 0), cylindrical section

(oXk)=[ F(L/2) sind sing, == (L/2) sind cosg, 0].
spherical caps. (4-3)

Then if the geometrical symmetry axis is a principal
axis of the mass distribution, and I'y=T,=T,

mnd
——————=—z2, cylindrical section
Z(I‘lI‘zI‘;)* I?
=q sin®};, spherical caps (4-4)
where :
(4-5)

a=ml*/8T
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is a measure of the relative importance of the geo-
metrical asymmetry and the mass distribution. Finally,
the principal radii of curvature of the surface are

af=g, g9=cw, cylindrical section

a=a, pP=a

(4-6)

spherical caps.

When these results are combined with the results of
the previous section, we find that

= f f f £25(K) sing: sinfadkdasdes
" = UnO 42U O Ups®,  (47)

where

Uu®= %azf f (14« sin’Fy+a sing,) /2
. _
° Xsind; sindedddds, (4-8)

* L2 4o ~ri2
U =2ra f f (1+—z o smzﬂz) sindydz,dd,,
0 Y-Lj2 r ' (4-9)

L2 ALj2 ~»/2
P f f [1+ (224325 )] dudz,  (4-10)
-L/2

~L/2
an

mn‘ 'fI:
———125(k) sinp; sinBedkdad
(87%)? f f f 4(TiTTs)} LSRGt

=V 42V 104V ®, (4-11)
where

Vi =4ra%? f f (1+a sin?¥ -+ sin’dq) /2
Xsm"’z?; sm3192d01d02, (4*12)

L -z
V1o ,)__ - f ( +—z12+a smzdg)
—L/2

X sinSz}zz 12d2 ldta 2y (4—13)

L2 L2

8ma

—» ]2
[ rre0]

V@)=

—rp2v-r/

X 21%25°d21d2s. (4—14)

The problem is thus reduced to the evaluation of six
sets of integrals. It is convenient to define the “rigid
sphere” cross section,

A=4r(2a)*=16wa?,

and a parameter 8 which is a measure of the geometrical

asymmetry
B=L/2a.

On making the appropriate changes of variables we
find that

1 1
Uu")=Af f [1+a(2—a2— %) T 2dxdy,
ovo
1 Al
va=tas [ [ CitatitaimTorasds,
N 0o vo

1 Al
Unp®= %;Aﬁzf f [1ta(2*+y7) I dxdy,
0Yo

V11(')=Aa2f f (1“952)(1—'};2)
P X[ 14-a(2— 22—y T dxdy,
Vo= bAcs f f 21— ) [1+a(l+2— ) T dxdy,

1 1 .
Vao=pdds [ [ wylitatet T ranty.
0 %0

" The transport coefficients are given in terms of the
brace expressions by Eqs. (0-24) to (0-26). The resulting

expressions for the shear and bulk viscosity are
7+10c
a(14-2a)}

15(kTwm)t( 10 a \}
()
64ra® o} 1+a

5 5 3
Xsm‘i——«i-ﬁ[—; sinh—lai-— sm"‘( : )

1+a La ot 142a

a i
——-—-—-———-—-l 142 _— mh"’(-——-—-
2a(1+a)} n(t+ a)]+ﬁ2[ ® 1+

T sin—l;f‘-—] }4, (4-15)

8« 14«

K=

(amkDA 2 7 a \} 2(14a) o
()22
32mwa? 14« a(l+2a}" 14a

1 1 o 3
+ﬁ[—-— sinb—lat4+— sin“‘( )
ot at 142

a*

a H

+a)

1 a -1

—_— sin“-——-] } . (416)
4o 1+«

LIRS )]+ﬁ’[1 ‘h—?(
ra(ita)y T T\

{SPH ()W Sy ()W)
SA skT\¥12 a \' 2(14a) a
=--=(=) {—s'm" =)- sint—
2 \rm at . 14« a(142a)t 1+a'

+ﬂ[ sinh}

—1

P (2+4a)
1+2a) V_za(1+a)ih(1+za)]

L
+ﬁ°[—— smh"‘( Y- sm‘La—] }

14« 4a 1+«
A fET\}(47+32
(se(eWs sienm = (=) |

2ot
_ e\t (12+36a+200%)  «  Sa+17  [474+32
si —‘(—-— . sin- [ sinhla?
1+e a(1+2a) I+a 2(14a) 4ot
47 16 b (48417204797 - 8at17
+ am( ) (48+172a+ )ln(1+2a) + ]
4ot 1420 - 8a(lta)t 2(14+a)}
3 o 47416 a \t (17442a+16a?)
R [ i ancash ]
20 14a 162} 14a/  16(1+a)(1+2)0]] |
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after integration over @, that
LSt (e )5 S (') it LS8 (e ?) s S () Jra

BTN\
=—;(—) f-uf(x’—ic-y)z exp(—y— 1V — ) (k- 1)S (k) dkdydwidw,

kT B— 26+ )T 5@ — E3~BEFSE)T a @+ £(3— 126+108)T 350 . — B(1—8E+108)T 250 — £(2— ST 1O — £ y oy
— 1r‘(7rm> f [ ' S(k)dk.
It then follows from the conservation of energy expression, Eq. (1-26), that if wo=0,

LS ™®); S (e Tut LS () 5 Si(e) Tua= — [Si(er?) 5 S (e ) T [S#(a); Si () Jua.

We now consider the threé square bracket expressions which’ enter into the expressmn for the thermal con ductivity, Eq. (0- 26).
ES Hea )Wy SHa®) Walut+[Si(a )W S ;‘(ez“))Wz]n

6 /AT ' -
= ——(-;) f e f[zrk"Y2+3 (%-7)*— (22/3)% (% Y)+ (11/3)x] ‘exp(— 72— e, — e2) (k- T)S (k) dkdydwidw.

¢ \rm
6 /BT ' %5(]30“)-—-3.721(”-}—3];2(‘)—]o;“))-{-?[\?——221,-‘-[—- (11/3)8V @
— (m — P9 (88/3) £+ (55/3) ¢V @+ #L9— 44£-+ (110/3) £17 5@ S(k)dk.

— P[3— (88/3) £+ (110/8) P 2s®— 8L(22/3) — (55/9)5 11— (11/3) T 5
To evaluate the next sum of squai'e brackets, we use the unsymmetrized form,

[Ss‘(Ex“’)Wh Si’(G:"’)Wﬂu‘l‘[Sil(ex(")Wh S ;‘(62"’)W2]12

1
= " f f IZS;‘(u("’)Wx —Si{a)W,]J. [S;‘(ex('))WrI-S,l(ez('))W,:] X 10 £,0 (k-0)S (k)dkdvidvadwido:

n¥ng
which after integration over @ is

) f f[(ﬂ"’— a[(5/4) (k- 1) =7 () +2(x- 1)+ K"rz—ZK’(K"r)]] + exp(—7*— e —e®) (k-I)S(k)akdydwidws.
1r‘ wm F3@B—a—ea®)(x-y—x%)
We nov introduce two additional sets of integrals similar to the’ J ' 0,

K"'(')—f f f (e —e®) (k1) (k- o) v* exp(- = e —e")dydwidw,,

Ly = f f f B—e— ™) (k- 1) (k- yo)"y*" exp(—7* *61(')—62(’))d‘rdwxdwz
In terms of these quantities,
S () Wy S (a@)Widut LS (@) Wi; S (e®) Waln
28(1— ) Kao® — 28(3— 45 Ky @+ 68 (1— 26 Ka® — 2£2(1— 4) K s
2 RT\} £ —28BuO+(5/9)K 0O~ HEnO+ (5/DEKu®— (G- DK
=7_r-‘( ) f 31— HEn W~ (1~ 20K 10— PR oW 4-§ (1~ £) L3o®
—5E2~3) L@ +5£(1—38) L2 +5£ Loy @

S(k)dk.

T

To evaluate the last sum. of square brackets, we use the analogous unsymmetrized form,!

LS (a)W1; S (e ) Widut-[Si () Wi; St (e ) Wali,

1
= f f[:S;"(el(’) YW/ =S¢ (61("))ij LS (e Wi+SiH (e)W,] 191, (k-6)S (k)dkdvidvdoido,

%x 712

( ) f f[(%-—ex(f))(e;(r)—ez(r))(K V(e — ) (yP—2x-v)—§(3— e — )] ] exp(—7? _el(f‘,_ez(r))(k,r)_
=t \wm XL(m/kT) o (a:X 1) Fm(orXx) - yr- (01X %) 1] S(k)dkdydwidws.

M,,f<*>=(—) f f f (610 — &) (01 [or X K]) (k- ) (k- 7o) 7> exp(— v~ &1~ e2)) dydwidws,
kT
3 ' ,
Nﬂ,(r):(ﬁ.) f f f (3— e — €27 (01- Lo X KJ) (k- ) (k- y0)" 7" exp(—v*— e — ) dydwidwy,
kT

0= [ [ [ = a) 0= ) ey e n explr— =N
£Q0300 — 26021V £Q15 0 EM 30D — 2EM 13 O EM 0, 0 — 22M 40O+ 62 M 3, ©

(kT) — O M 2 O - 28 M 13 @ = FEN 30O +4-3EN 150 — 2EN 02 @+ [ (03X k) - pr- (01X k) ]
XK 30— 32K V38K 1 — PR os® — 28K 50+ 88K @~ 128K 2@
FBEK 2N — 28K 14 © — 8 Lao "+ (9/2) Ly @ — (9/2) PL12 @+ 38 L0s @]

LS (a™)Wy; St (et Widee
+LSH (e )Wy S ()Wl

S(k)dk.

\TM
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