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We  introduced a rigorous physico-chcmical theoretical method to determine the shear, bulk
viscosity and thermal conductivity of bio molecular particles that has been proposed by Curtiss and
Muckenfuss (1957 ). The Boltzmann equation was solved by the perturbation method by assuming
that the system does not deviate excessively from the equilibrium state. The collision intcgral was
expressed by the Sonine Polynomials which was based on the Chapman and Enskog method. We
introduced this method on the basis of vector analysis and analytic integration. We computed shear
and bulk viscosity and thermal conductivity of  sphero-cylindrical particles as functions of
parameter that include the principal moment of inertia. The present method will be available for
cevaluating the gene regulation molccules.
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1. Introduction.

Genetic expression  onsets by molecular-molecular
interactions between the gene regulating particles - inducer
and target bases region in the DNA. We introduce
mathematical methods to compute  viscosity  and
conductance of two molecular systems which are firstly
proposed by Curtiss and Muckenfuss 1957.

2. Mathematical modeling.

Fig 1a shows trajectories of colliding two molecules. A
and B are the centers of the two molecules. g21 and g21'
are initial and relative velocities. The trajectory LMN is
traced by B. The orientation of the plane LMN about AP'
is independent of the velocities. It is specified by the angle
e between the plane LMN and a plane containing AP'.
The angle x through which g21 is deflected depends on the
magnitude of g of the initial velocity and on the distance b
of A from ecither of the asymptotes. b is a collision

parameter. It has a relation to two diameters (d1, d2) of

Fig 1-c

o ]

two molecules such that b = (d1 + d2)/2*cos( x /2) = (dl
+ d2)/2*sin(¢p ). The most important integral variables for
the collision integral is the vector k ( collision direction )
over the collision cylinder.

we define the “brace expressions,”
(Suns® WOY; S W)

1
e ff”z* Sinﬂ‘[[sl.nn'(') W15 St mme @ W1y,
8nn

+[Sz, nn' ) WZ(') H SL mm'(') W1(')]12 [d(!;ld(!z. (0—9)

The Spn (and Sy, an " and Sy, par ) are products of
Sonine polynomials depending on the index » defined
by Egs. (4-12) to (4-18) of reference 1, and the W
(and W1 and W,™) are certain vectors and tensors
also depending on the index » defined by Eq. (4-4)
of reference 1. The integrations on the right are over
all orientations of both molecules, #,* is the number
density of molecules of orientation e; and §; is the
second Eulerian angle of the rotation «;. The ‘‘square

bracket integrals” in the integrand are defined by
1
[Gi Hlu=—— [+ [[G*: (H'—H)]
n*ng*

X f19 £,0 (k- 8).S (k)dkdvidwidvadws.  (0-10)

This integration is over all collisions of molecules of
specified orientations, @; and «s. Here, k is the unit
vector normal to the plane of contact of the collision,
vy and v, are the linear velocities, and w«; and w; the
angular velocities of the colliding molecules. The +
indicates the transpose of a tensor, and the prime on
H’ indicates the value before a collision in which the
unprimed values are the values after the collision. Also,
S(k) and g are the cross section of the collision and the
relative velocity of the points of contact. These quan-
tities are discussed in detail later.

We now define the reduced relative translational and
rotational kinetic energies

&W=mV2/2%T; i=1,2 (0-11)
«"=1:Q.0/%T; i=1,2 (0-12)

where
V‘-= Vi— Vo, 1= 1,2 <0~13)

is the velocity relative to the local stream velocity, vo,
and
Qi=wi—wo; i=1,2 (0-14)

is the angular velocity relative to the local average

angular velocity, wo. We also define the dimensionless
relative velocity

m \}
W.'= (—"—-) V;‘ =12 0-15
sz b ) ( )
and the associated tensor,

m
W=—(VV;—3V2U); i=1,2 0-16
prpn 3V2U) (0-16)

n=3kT/{W; W}, (0-24)
1. REDUCTION OF THE SQUARE BRACKET INTEGRALS

The integrands of the various square bracket inte-
grals, defined by Eq. (0-10), depend upon the dynamics
of the collisions as expressed by the dependence of the
primed variables on the unprimed variables. For con-
venience in describing this dependence, we define
several new variables. First, we define G as the velocity
of the center of mass of the pair of colliding molecules,

G=3(Vo+V1) (1-1)
and g as the relative velocity of the pair
§=V,—V. (1-2)

The corresponding dimensionless variables are then [see
Eq. (0-15)],

@=(%)*G=v1—7(wz+wo, (1-3)
y= (Z’:—T)*gi—;-(wa—wo. (1-4)
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Solving this set of equations we find that

1
W1=;/—Z(@$—'r), (1-5)

1
w2=5(@+7)- (1-6)

We now define the dimensionless vector related to the
change in linear momentum of one of the molecules,

1
K:\E(Wl’—wl) (-7 W/=W+vZx (1-8
and from the conservation of linear momentum
W21=W2—'V7K. (1-9)

Then from Egs. (1-3) and (4), we find that
@/=@, (1_10) Y’=Y_2K' (1"11)
The vector ¥ may be evaluated from considerations
of the dynamics of the binary collisions. It may be

m \ 3

is the dimensionless relative velocity of the points of
contact. and

m -m
—=1+4+—_Lo1Xk]- u1-[o1Xk]+—L[o2Xk]- y2-[e.Xk].
PR 2 (1-14)

In these expressions, k is a unit vector normal to the
plane of contact of the collision, o; is the radius vector
from the center of molecule ¢ to the point of contact,
u; is the reciprocal of the moment of inertia tensor of
molecule 7 in the space fixed coordinate system, a
function of the orientation of the molecule, and

g=%—% (1-15)
where

go—_- (6)1)(0'1)"" ((.)2)(0’3). (1-16)

It is also convenient to define a dimensionless relative

angular velocity,
(TaLaTy)ve

(2%T)}
where T';, T';, and I'; are the principal moments of
inertia of a molecule. Then the expressions for the
angular momenta before the collision in terms of those
after are

Ii-w/=11-wit 2m)} (T Ve o1 X ], (1-18)
Iz 'Wz'= Iz ‘Wo— (ZM)*(I‘;I‘;Pz)”e[O’zX x]. (1-19)

The dimensionless translational kinetic energies [see
Eq. (0-11)] before a collision are obtained from Egs.
(1-8) and (1-9), and are

a' =6 042v2 (k- Wy) 42+,
Ez“)'= ez(”—ZVQ(‘K'Wg)"f-ZKZ.

(1-17)

(1-20)
(1-21)

In a similar manner, one finds from Egs. (1-18) and
{1-19) that

) 2(2m)}
Q' =4 wi-[o1Xx]

(TaDIg)ve

+2mloiXxJ[o1Xx]:u1, (1-22)
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2(2m)}
@mng L

+2mf o X k(02X x]:uz.  (1-23)

Then from the first pair of equations, Eqs. (1-20) and
(1-21), along with the definition of v, Eq. (1-4), we
0+ e = (0 eW—4(x-v) 42, (1-24)

and from the last pair, Eqs. (1-22) and (1-23), along
with the relations, Eqs. (1-12 to 16), we find that

1" €2 = €14 eI +-4 (¢ o)
+4£(1—§) (x-T)?
—2(m/kT)}(xX wg) - (01—02). (1-25)

When the last two relations are combined and use is
made of the expression for x, Eq. (1-12), we obtain

1O €0 - € - € = € O €4 € (- €
—2(m/kT)}(x X wo) - (01—02), (1-26)

which is, of course for the case in which wo=0, the
statement of conservation of energy.

Let us now consider the sum of the square bracket
integrals appearing in the expression for the viscosity,
Eq. (0-24). From the definition, Eq. (0-10), and the
symmetry relation® it is seen that

[Wl; Wl]12+[W1; Wz:]xz

1
=—-————f---f(w,'—wx):
271'1*11:2*

X(Wy'+ Wo'— Wi— W) /19 /,®@ (k-g)
XS(k)ddeldo)deﬁmz. (1-27)

Then introducing the equilibrium distribution functions
and the dimensionless velocity variables we find that

[Wi; Wiliet+H[ Wy Woli

G

X (WY W, — W,— W,)]
xex-p(_ 51(1) = 62(1).— €x(') — Ez(')) (k ]_“)
XS (k) dde;[szdW]_sz.

62(’)'= 52(7).—

(1-28)

The quantity in brackets, in the integrand may be
expressed in terms of the unprimed variables and the
vector x by means of Egs. (1-4), (1-8), and (1-9)

( W1’— W1)1 ( W1’+ Wzl— Wl"‘ wﬂ)
42
= ——3—(1(")’) (x-W1)—4v2:2(y- W)

16v2 16 16
+—3—"Kz(1c . WQ——;Kz(K . 'f) +—§'K‘. (1-29)

We now cnange integration variables from W; and W,
to @ and y. The Jacobian of the transformation is unity
and

O+ aO=@y, (1-30)

Thus after integration over @,

-3_
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[W;y; W1]12+[V¥1; W2l
e )] T

wm

— (8/3)1(x-v)+$x] exp(— 12— &V — &)

X (k-1)S(k)dkdydwidwa. (1-31)

It is convenient to define the following functions of
k and the orientation of both molecules:

]"’(')=fff(k"r)'(k"ru)"‘v"

Xexp(—yi— e — eM)dydwidws, (1-32)

where

o= (m/4kT)}g. (1-33)
Then introducing the expression for x, Eq. (1-12), and
the expression for I', Egs. (1-13) and (1-15) into Eq.
(1-31) we find that the sum of square brackets may be
written as a sum of integrals of the J,,-(" in the follow-

kT

4 ]
[Wi; Wilu[ Wi; w2]n=——(—) [ | SEdk(1-34)
™ \rm
[F‘(Jao(”—3.721“)-{'3]12“)—fosm)'l"}g(l—3E+4E’)Jso(°)

—32(3— 326+208) T O+ 3(3— 48£+408) T 32 @
— 3P(1—32H402) T3 — $£3(2—5E) T 14O — $3 5@ |

To evaluate the next sum of square brackets.

LS Wy; S (1) Wi T[S ()W ; Syt (€)W 1o

=
ﬂx*ﬂz*

LSy ()W =S (a1 ) Wi]-[S (1) W1t-S (e?) W]

X f19 £, (k- 0)S (k) dkdvidv.dode,  (1-38)

which after integration over & is

% f_g)!f...f[(q(r)_ezm)
[(5/4)(1<-‘r)—%7’(1<-Y)+2(x'7)’+k"r’—2x’(u--r)]]
=" —a®) (xy =)

Xexp(—y*— e — &) (k-I)S(k)dkdydwidw,. (1-39)

two additional sets of integrals similar to the J,,/¢?,

K= [ [ [ (e aepyGerrr
exp(—72— " — &) dydwidws,
L= [ [ [ == ey v

exp(—7*— eV — &) dydwidw,,
2. INTEGRATION OVER THE VELOCITIES

Let us now consider the six sets of integrals over the
velocities, J,, ", K, ", L. M, N, 0,0,
We consider first the integration over . In all six cases
this involves the evaluation of the integral,

(1-40)

(1-41)

I,<'>=f(k~7)’72’exp(—vz)d'r, koy<k-yo. (2-1)

The range of integration 1s restricted to those values of 7y
for which the impulse is positive. This integral

Institute of Electronics, Infornmation, and Conmunication Engi neers

depends parametrically on vector k and scalar (k « yo0 ).
Since the integral is a scalar, it depends only on the square
of the single vector,k which is unity. So integral 1, ®can
be expressed as a function of the single scalar, k « 70 ).
To obtain (k « 7 0) we evaluate by using coordinate

system in which k lies along the positive z axis. Then

koyy %0
I,(r) = f f f ')’3’(’}’1"{"7 22_}_732)'
—00 —00 " —00

Xexp(—vy2—vit—ys)dyidyadys, (2-2)
and on carrying out the integration we find that

k.vo
I,O =g f ¥ exp(—a?)dx, (2-3)

-0

k.70
I,(’)=m-f 2" (1+2?) exp(—a?)dx =1,041,1,®(2-4)
Similar recursion relations for higher values of r may
also be easily obtained, but only the values 0 and 1
occur in the discussion of Sec. 1. Since each of the six
sets of integrals mentioned above are integrals of I,(",
it is clear that similar recursion relations apply to each
of the six. In the remaining portion of this section, we
consider the evaluation of the sets of integrals for the

case of r=0.
To carry out the integration over w; and w;, we

change variables to the new set of six,

W‘--l."w.'

6= =12 (2-5)
(TaloTg)3

Yo =w;- (o:Xk), i=1,2 (2-6)

W =w;- (e;X[o:Xk]). i=1,2. (2-7)
Hence let us consider the Jacobian
Let  4i=0ixk, i=1,2 (2-8)
bi=0o;X[o;Xk], c;=a;Xb.. (2-10)

Then clearly the Jacobian of the transformation from
Wit, Wiy, Wiz t0 €7, 7P, o is

9 (ei(r);'YD“),So(i)) _s Cit L.. w;
(Pﬂ"zra)*'

» evaluate this expression in terms of the new vari-
ables, it is necessary to solve Egs. (2-5), (2-6), and
(2-7) for the components of w; in terms of the new
variables. That

(2-11)
9 (Wi1,Wia,43)

SiX (ci- 1) A e
W=, (2-12)
ci-livey
where
Si=v0bi— o Va; (2-13)
and

A ,-2= e{(f) (I‘ll‘zl‘,) ‘(C‘-- 1 e c.-)— (Plrng) (S‘ u; S.) (2_14)
First, since
a;-ce=0 (2-15) a;XS;=v0V¢c;, (2-16)
it follows on direct substitution that the solution, Eq.
(2-12), satisfies Eq. (2-6). Also since
b;'C;—“—'O (2-17) bixsi= go(‘)C; (2‘18)
it follows on direct substitution that Eq. (2-7) is also

_4.__
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satisfied. The proof that Eq. (2-5) is also satisfied
depends upon the identity

L [S:X (ei- 1) ]= (C10a0s) (- So) X es,  (2-19)

which may be proved by expansion in terms of com-
ponents. It then follows upon direct substitution of
Eq. (2-12) into Eq. (2-5) and use of known vector
identities that Eq. (2-5) is also satisfied. Thus Eq.
(2-12) gives w; in terms of the new variables.

Upon substitution of Eq. (2-12) into Eq. (2-11), we
find that the Jacobian of the transformation is

(&0 D,0W) 24,
0 (Wi, Wiz, Ws3) (TyLarg)t

The range of integration of w; is from —  to + on
each of the three components. It may be shown that
the equivalent range of integration of the new variables
consists of those values for which 4 2, Eq. (2-14), is
positive. The transformation, however, is two to one,
so that it is necessary to integrate over this range of the
new variables twice. This is equivalent to using as the
Jacobian a value half that given by Eq. (2-20).

Since the integrands in which we are interested are
independent of ¢, we now consider the integral,

(2-20)

!
(4Tt f 4o, (2-21)

From the definition, Eq. (2-14), it follows that 42 is
quadratic in ¢(? and may be written in the form

A 2= (DiTals) (s we 20 (ps DV — ) (P — o_19) (2-22)

where ¢,(¥ and (9 are the upper and lower roots of
the quadratic. Thus the integral of Eq. (2-21) is

1 PRO) de®
(TiTa) Vo (@ wi-ad ), o (o (0 — o) (o — W

This integral is a standard integral, (2-23)

dot® )
T f = e
(Falal's) A;  (DaCs)V8(a; ue-ay)?
From Eq. (2-14) it is clear that the roots are
a i b
sai(s)..—____.___4-Y‘)(‘)
APy a4
’ [[(ai-ue'bf)’—(ﬂ-"w'ﬂi)(b»"vs“b-')]'vo“”;
a;-pi- 2L+ (TPl ~Hag wi- a9 (e Lir e e (2_2.5)
ci-livcq
(ai-pi-bi)’—(ai-ui 2 (by-pi by) = ———— (2-26)
. Talels
Px (ci-Ts et R
(ai-uicb )70(’):!:———“[(1-‘11‘2113)*(&‘ B a) e —y P
( 1 2 3)l
a‘-.gi.a‘- (2'27)
o/ (Tials) ¥ (as i ay) (2-28)

to infinity and that then the integration over y o) is taken
from -00 to + 0o0.

ni= (TP La)Vé (a; us-an)th. (2-29)
From Eq(1-32), the expression for 1,® Eq 92-3) and the
result of integration over ¢ WEq(2-24), it follows that

and Conmuni cati on Engi neers

]rv'(0)=

x ® % o k-9
L
N2 YoV w0V yeW/pav 02/

exp(—22— e,V — M) dxderVdey VdyoWdy®  (2-30)
Then after integration over ¢ and e, we find that

1[’3 o0 0 ko
e NN
mne vV

—Y —c0

—Yo(l)’ 70(2)'
—? — M dry (2
exp( x?— 7 )dxdyo dyo®, (2-31)
kvo ye®? 70(2)
Kn' ) (k ' Yo)y,
nn2
70(1)’ 70(2)’
exp(—x" - )dxd'yg“)d'yq(” (2-32)

k70 o @7
Lyy'm)—"—‘—f f f x'(l— ’ - ° )(k '{0)
MMz Y o¥ -0V
exp( — gt
02
From the deﬁmtlons Eqgs. (1-33) and (2-6), it follows
m\?
('—) w;-(c;)(k)
ET (2m)}
=
(IaDa') Ve
(m)}

k-yo=—————— (70— 7®)
VZ(TiTT) Ve

.Yo(x)’ 'Yo(”

)dxd'yo“)dw(”. (2-33)

2

m+(%)’m.(o,-xk) (2:35)

+(£’_T)*<m-.n).(k><m>. (2-36)

Now since we are considering only the special case in
which wo=0, we transform to new coordinates defined

v (1)...70(2) n 2.7, (1)+ z,y @)
u=—(k-'ro)=—°———(2-37) e 1TV ) 3g)
n ("7 2+7)22)* 711172(‘1712‘f'f]22)i
( )* (24922t
K 2 (Plpzra)lle
N u+nma —notu~+nmap

YW= , (2:39) 1=

(n )t ()t (2-40)
and the Jacobian of the transformation is
8 (yo™,70®)
a(u)

The integrals of Egs. (2-31) to (2-34) are then of the

form
f B f f ¢ dadudo,

The integrals over v are complete mregrals

nu
],,,<°)=1r’/217"f f x'w”’ exp(—x*—uP)dxdu, (2-43)

e L f (=D’

=m7ne. (2-41)

(2-42)

Ky @ =g 7i2

Xexp(—#2—uDdxdu, (2-44)
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+o  Nyu
Ly @ =nlyp" f f G-’

—0 V-

12

Xexp(—a2—u)dxdu, (2-45)
0) — 1['7/211',

+o ayu
(1?124‘1122 2 f—w
Xx'w' exp(— 22— ud)dxdu, (2-46)

12 400 nu
f f u(3—ud)xw”’
2 00 Yo

Mrv’

N,y 0= 7"7,271,’

s
Xexp(—a2—u?)dxdu, (2-47)
Then as a final change of variables we let
u=r sin. (2-49) x=r cos? (2-50)
The Jacobian of the transformation is clearly
d(x,u)/0(r,8)=r. (2-51)

The limits of integration on r are from 0 to o, while ¢
goes from & to ¥o+mr where

tando=1/7. (2-52)

We now define

Jotx
Aw’ = f
Jo

Then after carrying out the integration over r we find

cos’d sin”'9dd, (2-53)

Ll —=nRu(’—3)+2nlu]

and Conmuni cati on Engi neers

[Wl; W1]12+[W1; W2]12

3
from Eq. (1-35) that
LS (e9); S () Jut[Sit(af); Syt (e ) i
=(2) [ sa-pswas
and from Eq. (1-37) that
LS (e )Wy; St (e YW Jua L83 () W15 St () Wa i
~—( ) f B(15—11)S(k)dk. (2-64)
Then from Eq. (1-42) we find that
LS (e Wi; S (e ) Wilud-[Si (e 9)Wi; Sit(e™)Wa i,
E
= _:S.(E) f g(1— E)S(k)dk—l—antisymmetric terms (2-65)

and from Eq. (1-48) that
[Si (e ™)Wy; Sﬁ(ﬂ"’)Wl]u'l‘[Sil(fl('))wl: Sil(fz(")wzsz

E(;;) | [s*<5—zs)+—zs*<1—z)2

2 27
e £ (3___5)]5(1;)(11{ +antisymmetric terms(2-66)
4

) f B—2SM)dk  (2-62)

Wiaxd DTy
T @ =l F( 2 +1)A”" (2-54) In the latter two expressions we have not written down
ni—n2 the terms which are antisymmetric with respect to an
L,®=17 vy'(°)——2f rri2®y K O=— " QLw'(o) interchange of 1 and 2 since these terms do not con-
K (2-56) it (2-55) tribute to the brace expression defined by Eq. (0-9) in
the case under consideration in which wo=0.
O 5220 ®) T, n© ’72 'l 3. THE INTEGRATION OVER k AND THE
Mo (nﬁ-!-n;ﬂ)z[ (v —4n) = . Trr4a® ORIENTATIONS
22 1 (2-57) " From Eq. (0-9) and the definition of 5%, if wp=0,
Ny ©@= 1@ ——J @ |, (2-58) e S WO
n12+n22 ’72 { nn' & w(' Smm’ W }
00 @ [1 L ?—nd 37722("112_1722)]] © (81r2 2 ff LS1an @ W15 S i W7y,
w! = T w!
4(’7 +’722) 4(’712+7)22 2 +I:Sl nn'(') wl.(') Sz, — Wz(')]xz.l Smﬁl Slnﬂzdﬂlddn(s 1)
The square brackets have been reduced to an integra-
22 2 22 2,2
+[ R ! (ni®— 2 8ni'ns ]_1_ 2@ tion over k. Thus the problem is reduced to an eight-
2(n*+n2?) 204 I fold integration over the two angles (%,¢) of k and the
six Eulerian angles (s, B8, 7vs) specifying the orienta-
(=) X tions of the two molecules.
T el o Ty ®. (2-59) To carry out the eightfold integration, we change
7 (i +na')* variables to a new set of angles. Let K;;, Ri;®, and

From the definition of £, Eq. (1-14), and the defini-
tions of this section, it follows that

1 2
I M_lﬂz, (2-60)
£ 2(I'\oly)}
Thus
£=sin’,. (2-61)

The evaluation of the A, may be carried out by
straightforward methods. The expressions for the J,,,©
obtained by substltutlng the results into Eq. (2-54)

The expressions for the various sets of integrals
derived in the foregoing may be used in the expressions
for the square bracket integrals derived in the previous
section. Thus we find from Eq. (1-34) that

R;;® be the elements of rotation matrices associated
with thesets of angles (¢, ¢, 0), (a1, 81,71),and (a, 82,72),
respeétively. We then define the angles ¢/, ¢,', 4./, and
@2’ by the relations

5= EJ K3JR‘IJ( )

Z: KGJR'-:( )

(3-2)

3= (3-3)

where the K;;¥' and K;;¥’ are elements of rotation
matrices associated with the rotations (¢i, &/, 0)
and (5, ¥, 0), respectively. Geometrically, the angles
¢4’ and ¢y’ are the polar angles of the point of contact in
a coordinate system fixed in body 1. Similar considera-
tions apply to ¢, and ¢,’. We next define the angle ¥

_6_
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by the relations

sing = Qanzxm“ Qnm Qn(’) (3‘4)
cosyp= Qquum‘f‘sz(‘)Qn(2), (3"5)
where
0:V=Y KjpW'RuWK (3-6)
k.1
Qii®=2 Kp®'Ru®Ka. 3N

k.l
The angle ¥ is an azimuthal angle which, along with
3y, ¢, &, and g7, specifies the relative orientation
of the two bodies.

We now consider a change of variables from the set
4 ¢, @, B, M (3-8)

to the set
l’ll, (01', 752', (02', v. (3'9)

It is shown in Appendix B that the Jacobian of the
transformation is

9 (01’) (91,102’) 102’7'10)
d (") ¢’a1)ﬁ1)7 1)
Thus from Eq. (2-62) and Eq. (3-1), it follows that

1
w; W ~—--( ) f i(5-20)S
{ } 960t £( £)S (k) sinsy’
Xsindy' Smﬁzdt?1’d¢1’d02’d¢2’d¢dd2dﬂzd72, (3-11)
In all of the integrals of the type given in the last
equation the integrand is independent of the Eulerian
angles as, B2, and vs. Thus we can carry out the inte-
gration over these angles and obtain,

(W; W1=——(——) [e6-295m

Xsindy' sindy/'dd/de/dd:/do/dy.  (3-12)

The shape of the rigid ovaloids is conveniently
described by means of the supporting functions,’
HO(¢y,0,) and HP(8,,¢,"). Since the two bodies are
assumed to be identical the two functions must be of
the same functional form. Furthermore, since the
center of mass is assumed to be a center of symmetry
the function must be of such a form that

sind sing;

sindy’ sind,’

(3-10)

HO(r—8, o/m)=HWD(8/, ¢1). (3-13)
In terms of the supporting functions
S(k)=m(x)'g'(x)'_8(1)'5(1)'+(R(2)'q’(2)'_5(2)’5(2)'
oS (RW' T - TW QA — 28W)@)')
+Sin1\b(m(1)'m(2)'+T(L)'T(z)’+25(1)’3(2)')
42 siny cosy[SW'(RP' — @)
PH® — (RO —gwHg@] (3-14)
A =H O (3-15)
992
] ( 1 9H®
S = ) (3-16)
38/ \sind! ¢/
cost aHW 1 *H®
TE = H )+ f (3-17)

sind/ 98/  sin®! 98,7
The integrands in which we are interested depend on

the angle ¢ only through the element of surface, Eq.
(3-14). Thus we integrate S(k) over y to obtain

I nf ormation, and Conmuni cation Engi neers

RW T QO T

f Sk)dy=2r| +3(AV'+TO)NRD'+T@")|. (3-18)
—§Yga) g2 g@)’

The remaining portion of the integrands depend upon
the remaining angles through the 5, Eq. (2-29), both
explicitly and through ¢, Eq. (2-60).

dHW
(01Xk)i=———23 Ky;®'R;;®

301’ i

1 oeH®W
¥ KRy, (3-19)
sindy’ 617'1’ H
dH®
(02Xk)i=——— T K5;®'R;®
602' i
1 8H®
T Ky®'R;®. (3-20)

sindy” 9 ¢2I H

The second expression applies only if the center of mass
is a center of symmetry so that the supporting function
satisfies the identity, Eq. (3-13). If the body fixed
system is such that the moment of inertia tensor is
diagonal (principal axes) then

o
> Rik(’)#kz(_')Rjz(')z—j-, (3.21)
k1l I‘,‘
From Eq. (2-29) it is seen that
7= ([1T3l9)? Zl(aer)kﬂkl'(O'er)l- (3-22)
K
=g (S K. Sl
ad’, sim?,’ ap,' P,‘
From Egs. (3-12) and (3-18), it follows that ~ (3-23)

W; W}=é(g)* foe-2

(RW' T —g)'gW")
X _}_(m(z)'q'(z)'_s(z)'g(z)')
FHRW FTOY (RO 7@
Xsindy' sinds'ddy/doy'ddy deoy.

Let g1® and g,{? be the principal radii of curvature of
the surface of body 1. Then it may be shown that

RV T — SIS = g (g, (D)
and
RO 4T =g D gy,
Furthermore,
(ROD'TEY —g('§D'Y gingd /dd3{/d o =dS;

1s an element of surface of the ovaloid. Thus

(W; W ——(—) [ee-2

1 1 1
! - -1 .dS1d.S
GWg® gx"’gz(”+ (g,m g,a)) (glm ' gzm)J o

._7_
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We have computed following coefficients
1=5T/{W; W},
3T
LESH () S ()} = {Si*(49); S ()} T

[9{5;‘(5“’)“’; SP(OYW) —15(SH (D) W; S ()W}
3k2T —IS{S.I(G('))W' S,l(e“))W}+25{S,1(e(”)W'S;‘(e"))W}J

[{S'l(e('))w i SHENWHS ()W S ()W)
—{SP(e)W; SR WHSPH(e)W; S ()W)} J
7410« «

w; Wi =*(—) [ 1+a)§_a(1+2a)i S

14«
+ﬁ[— sinhlai4— sin—‘( 2 )i— > 1n(1+2a)]
4 at 142a 2a(1+a)t
a \V 7 a

ol (i) ]

14a
kT v oo
[S1(e0); Sp (e“’)]—ZA( )l—sm“’( * )— L
14-a a(1+2q)t 14a

2+4a)
142/ 2a(i+a)

a \t 1 a
ol () Lt
14« 4o 14a

8a

i—ﬁ[—’sinh*‘a’—i—— s‘in—l( 1n(1+2a)]

t 30at26 a
s siceomi=2 () [P ()~ i
1+4a a(142a)t 1+4-a
. a 15426
-HS[— smh_‘a’-i-— sin“( ) — ln(l+2a)]
142/ 2a(14a)?
13 a
() S
14-a 14a
54 2 a
(st sieowy =~ (2)’ [Zom(-2)- ) e
2 l 1+a a(l+42a)t 14a
1 a \' (24a)
+ﬂ[— sinh"aH——sin"( ) - 1n(1+2a)]
1+2¢x 2a(14a)t

+ﬂ’[— sm}rl(1+a) " da sm_l1:a] }

AT\ 347432
(5w i) =2 (ST (2
2 \xm

2at 14« a(142q)t
a  8at17
sip—--—
1+a 2(140)
47+432a 47416«
—}—ﬁ[ sinhat+4 sin™ ( )
4at 14 2a
(4841722479 ) 8a+17
In(1+22) |
8a(1+a)t 2(1+a)t
3 a 47+16a a \} (1744224162
oL T S 0 Y Wbt
2  1+a 16t 14a/  16(1+a)(1+20)!
n shear viscosity , k bulk viscosity , A thermal
conductivity
-8 —

¥ (12+436a+20e%)

Fig 2-a

Ita

0.84

0.63 4

0.62 -

0.61

0.60

0.59

kappa

Lamda

alpha

2.2 .
0.0 0.2

3. Results.

Fig 2 shows shear viscosity 7 * (kKT)/A, bulk viscosity
k*kT /A and  thermal conductivity A *8/3(k%T ) as
functions of o = m L2 /(81") where [ is principal
moment of inertia. 8 = sqr( ['/m a?* 2 g). We set
for simplicity beta =1 and m=1. 7 and A showed
definitc peak values. There was significant discrepancy
between the shear viscosity and bulk viscosity.

4. Discussion.

We introduced mathematical method for only a simple
kind particles. An extended version will provide molecular
collision for mixed kind particles.
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