Institute of Electronics, Infornmation, and Conmunication Engi neers

tEHEA BT HBIE T L (EE253
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS MBE99-103 (1999-11)

Method for  Predicting the  Constitutional
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We introduce a simulation method for evaluating the arterial wall displacement in the radial direction
and the bending stress as functions of the distance from the anastomosis/ Neglecting the
longitudinal vascular displacement , the equation of radial motion for an elastic tube was derived by a
dynamical constitutional consideration of the cylindrical tube. Since the magnitude of wall shear
stress ( the bending stress ) is in proportional to the third derivative of the wall displacement in the
radial direction, the bending stress can be obtained in an explicit form. We analyzed the spatial
distribution characters of the radial displacement of the arterial wall and the bending stress. We have
discussed the availability of the present simulation method for constitutional changes around the
anastomotic region of arterial system by comparing the reported biological surgical operation.

Vessel anastomosis. Constitutional change. Wall displacement in radial direction. Simulation.
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1. Introduction.

Arterial graft is one of the most important medical
treatment for vascular diseases such as arteriosclerosis. The
important  issues in surgical treatment are, 1) the
impedance matching between the graft and recipient and
2) evaluation mechanical changes in the anastomotic region.
For the first point, we have given optimal matching
conditions for substituting the graft artery. For the
second issue, we introduce a simulation technique proposed
by Rodgers to predict the shear stress and radial wall
displacement at the anastomotic region.

Fig 1-a shows a shell which middle surface is a cylinder as
a geometric model of deformed arterial surface. The
membrane force acting on the four edges must lie in
tangential planes to the middle surface. They are resolved
to normal and shear components as shown. The forces per
unit length of section are Nx, N ¢ andNx ¢, N ¢px. The
loads per unit area of the shell element ha components px
and p¢ in the direction of increasing x and angle. The
radial component pr is positive in out ward.

Fig 1-b is referred from Kuchar and Ostrach 1966 for
the simple description of the forces on the membrane.
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Fig 1-a
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Fig 1-b

Definition of anastomotic junction and host artery. This
picture shows measurable quantities of radius, wall
thickness and radial wall displacement. The longitudinal
position x=0 is the anastomotic junction.
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2. Modeling and solution.

The model of the vessel wall proposed by Kuchar and
Ostrach incorporates radial stress Srr and axial stresses
Srx

Sor=P-2y gv/dr(r=Ru) e (1)*
Stx=-py (Ju/dr+ 9v/dx)(r=Ru) - 2)*

where
P is transmural pressure,
u is the longitudinal velocity of blood flow
v is radial velocity
 is dynamic viscosity
Ru is the undeformed inner radius of the vessel.

The equations for the radial displacement 7 and longitudinal
motion, v of the vessel wall are

pwh 9%n/ 9 =Sr(1-h/Ru)-/RuTge
+h 9Txr/9x  ==--- 3)*

poh 927/ 9 =Srx(1+ h/Ru) Sc
+h oTxx/9x  =--m- (4)*
where
0 » is the density of the vessel wall,
h  is the wall thickness
t  is the parameter time and
Sc  is the stress component along the axial direction of
the vessel wall.
n is the difference between the inner radius at any
longitudinal position R(x) and Ru.

The stresses associated with this model are

Tos =E(1-02)(ce6+ 0 exx)
+ ERZ/[12Ru(1- g2)]1 k8 -5

Txx=EA1-0%2)( exx+ 0 c66)
- Eh2/[12Ru(1- 02)]] kx -—(6)

Txr =- E/[12(1- ¢ 2)]
*Olkx+ okf -(exx+oeoo)/Rul/ax --(7)

where
E is the elastic modulus of the wall and
o is the Poisson ratio which was assumed to 0.5

The strain  and curvature
displacement by

changes related to wall

c06= 7n/Ru exx= 9 7r/dx --(8)

k0 =17 /Ru? kx= 92n/axt T ®)
Assuming that y =0 where the vessel is constrained from
moving longitudinally and substituting the expressions for
Srr, T 6, Txr, E and k into the equation (3), we have the
wall motion equation for an elastic vessel which has been
proposed by Kuchar and Ostrach,
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pwh 920/ a2 =P(1-h/Ru)-Eh n/[(1-02)Ru?)]
-EB3 /[12Ru(1- ¢2)]
(n/Ru*+ 34n/ax*) ----(10)

when the same substitutions have been applied to the wall
shear stress Txr ( the equation 7 ),
the expression is

Txr= -Eh? /[12 (1- 02)] 93n/9x> - an

The equation (10) can be simplified by performing an order-
of magnitude analysis to eliminate those terms which
contributes little to the radial displacement of the vessel.

The geometric coordinates (x,1 ), velocity variables ( u,v ),
time (t), and radial displacement parameter ( 7) are
converted to dimensionless form. Such dimensionless
forms were substituted into the fluid continuity equation.
The boundary condition is

v(r=Ru)= dn/dt=Ru) --mm- (12)

The equation (10) can be transformed into the dimensionless
form

0w(l-g2)Ru?2 /(ETo?) 92%n/ ot

={[ APRuL(1-02)/(ToEhU]P*

2[ Ru(1l-¢2)/(EhTo) av/arJ=1)}
*(1-WRu)- 5 - h2 Ru*/(12Ru? L) 947/ 9 x*
-(h?/Ru2)yn - (13)

where the * designates .a dimensionless parameter and L,
To, U and AP are constants which relate dimensional and
dimensionless variable

x=Lx* t=Tot*
u=Uu* and P=(AP) P* = cceeee 14)

The relative magnitude for each factor in the equation (13)
is estimated by inputting literature values for Ru, h, E,
TO, 0 w, L, AP

Neglecting the terms which contribute little to the radial
displacement of the wall vessel, we have the following
equation.

Eh¥/ [12 (1- 02)] 9%n/ax*
*Eh/ (1- 0%) n/Ru® =P (1-hRu) —-(15)

The solution of the equation (15) requires that the time
varying parameters 7), P, h and E be prescribed. '
The values forh and E may be considered constant and
set equal to their mean value over the cardiac cycle. The
parameter 7 and P are time periodic and can be
expressed by a Fourier series

n =Re{ § explinwt)}
P=Re { Pcexpiwt) } ---- (16)

where £ and Pc are complex constants, ( is the
frequency of the pulsation and Re{} denoted the real part of
the complex number. Substituting these expressions into
equation (15), we have :

Eh3/ [12 (1- 02)] expiwt) 94 &/9 x*
*Eh/ (1- g2) exp(iwt) &/Rud
=Pc exp(iwt) (r=Ru) ---(17)

where the factor ( 1- h/Ru ) has been absorbed in the
constant Pc. This can be further simplified into

d%E/9x* + 12 g/[h3Ru? |
=12 Pc (1- g2)/Eh3 --(18)

The appropriate boundary conditions are

7 (x--->00) is bounded

0 n/dx(x-->00) is bounded

n (x--->0 ) is measured value and

d n/dx(x-->0) is approximated numerically.--(19)

The solution of (18) under the present form of the
boundary conditions are

nx)=( no- nooj)exp(-Cx){ cos(Cx) + sin (Cx )}
+(D/C)sin(Cx)exp(-Cx) + 700 - (20)

where

71 0 is the radial displacement functions evaluated at x =0, the
anastomotic junction. noo  is the radial displacement
sufficiently proximal or distal to the anastomosis.
Substituting the equation (20) into Txr results

Txr(x) = -Eh?/ [12 (1- 02)]
[4C3 (no- noo)exp(-Cx) cos(Cx)
+2C2Dexp(- Cx) { cos(Cx ) + sin (Cx )}---- (21)

Equations (20) and (21) provide the theoretical framework
for analyzing the experimental data. In the investigation
reported by Rodgers et in 1987, they set ecither the
theoretical elastic tube model prediction for C and D,

C=3Y4(hRu)(1/2) and
D=9 n/ox(x-->0)

to calculate 7 (x) and Txi(x). Another method to
determine Cand D are regression analysis in which C and
D are estimated by numerically regressing the experimental
contours against equation (20). The resultant values for C
and D are input into the equation (21) for calculating
Txr(x).

The apparatus proposed by Rodgers (1986 ) is mainly
mechano hemo dynamical one. They are consisted of the
natural hemo dynamic environment of tethered host artery-
graft combination are simulated in vitro. They measured
outer radius of a pulsatiling vessel at multiple longitudinal
pulsating inside radius R(x) and wall thickness h. The
inside radius and wall thickness of a relaxed non perfused
vessel segment are measured following the completion of
each perfusion experiment.

The data of resting geometry related to the measurement of
the outer radius of the tethered vessel by applying the
conservation law and constant density property of the
wall.
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To evaluate the elastic property of the wall, the dynamic
incremental elastic modulus E as Bergel ( 1961 ) has
introduced. E was computed by measuring the maximum
and minimum transmural pressure and wall distension
difference. Moreover, E was independent from the
longitudinal position.

Fig 2-a  canorip-carotio (PROLENE SUTURE)
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3.Results.

Fig 2 compares the elastic model prediction for Txr (
solid curves ) versus the values derived from the numerical
regression ( dashed curves ). The95% confidence intervals
of the curve-fit predictions for Txr are included ( short
dashed curves ).  Shear stress by the theoretical elastic
model have over estimated than the numerical curve fit to
the experimental data.

DISCUSSION

In Rodgers paper, as an alternative approach, a curve
fitting or regression model has been used. It is
advantageous to use the elastic model and regress on the
parameters C and Din equation (20). The parameters C
and D have to be adjusted to fit the experimental data. The
regression technique affords effective comparison between
the measured and regressed parameters C and D.

In the Rodgers boundary conditions, 7 (x=0) was set
equal to the measured radius immediately adjacent to the
anastomosis. Ro minus Ru. As such the true boundary
value is reflected in the displacement function. Moreover
Rodgers boundary condition approximates  the first
derivative using a two point divided difference between 7
(x=0) and immediately adjacent experimental longitudinal
data point. These two rigorous boundary condition afford
realistic application of the elastic tube model to the
anastomotic junction.
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Both the end points of the experimental displacement curve
1 (x=0) and 7 (x=00) are selected based on experimental
criterion. 7 (x=0) must be identically correspond to the
longitudinal position most immediately adjacent to the
vessel surface interface.

We have introduced Rodgers simulation method to predict
mechanical changes around the anastomotic region. Their
method, however still lack rigorous mechanical
consideration such as tethering effects from the surrounding
tissue, initial wall tension, viscous retardation force from the
blood flow. Incorporating such properties will improve the
prediction capability of their method. In the APPENDIX, we
give a rigorous mathematical treatment for analyzing the
wall displacement, shear stress and moments on the arterial
wall.

5. Conclusion.

We introduced a simulation method proposed by Rodgers
(1987) to predict radial wall displacement and shear stress
around the anastomotic junctional region. By incorporating
more rigorous biomechanical properties of arterial wall,
their method will available for evaluating the deformation
of arterial wall by graft operation.
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APPENDIX

1 ] Axial displacement Ua and U.
Fig 1 shows the axial displacement selectively. Fig 2 is the
enlarged picture of Fig 1 from holizontal view.
ZJAA0D=[ZJA'A0'B'=90",and assumption 2
[ZJAoDB= [Z4C'A0'C=180". So [ZJA0'A'C' = [Z]B'Ao'C.

The Ao'B' changes dw/dx per unit length of the x axis
against Ao'C. Then
Ua=U -C'A'o =U-A'A0' sin ((JA0'A'C")
=U-z sin ((ZB'A0'C) =U-z sin(dw/dx).
Since dw/dx is small, sin(dw/dx)=dw/dx. So
Ua =U-z dw/dx. ey

2 ] Circumferential displacement Va, V.

Fig 3 illustrate the circumferential displacement. Fig 4 is

the magnified picture of Fig 3 from holizontal view.. On the

circule of radius R, 27 R:V=27:¢. Then ¢ = v/R.

As Va=AA"-NA".

Firstly we calculate AA" then NA"= NP + PA"

Since point Ais on the circule whose radiusis R + z,
then AA'" = (R+2) ¢ = (R+z) v/R. (2)-a

Now we seck NA''. According to the assumption 1,
[ZJAAOE=[Z]JA'A0'E'=90'". Since
R+z >>Waand 1>>v/R=¢,
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one canregard JA"// A'N. Therefore
Then NA"= NP + PA"
90'=ZATA"=[JIA"N =[4PNA'=[ZNA'I. (2)-b = Wa tan(1/R dw/d ¢ )+ z sin(1/R dw/d ¢)
dw/d¢ is the ratio of change in W around the central - Wa tan(1/R dw/d ¢)
angle ¢. Then =zsin (I/R dw/d ¢ ).
E'A0'F=1/R dw/d ¢ 2)-c Because dw/d ¢ is small, sin (1I/R dw/d ¢ )= 1/Rdw/d ¢.
Then Va=(R+z)v/R-zZRdw/d¢ . @)-f
W can be regarded constant between F'F and GH. So
F'A0'F//GEH. Then IT ] The stress- strain-displacement relations
[ZTAO'F =[4A0'EH =90'. So The axial ¢ x, circumferential £ ¢, and shearing ¢ x
ZPA'N = [ZA'A0'A" =[ZE'A0'F=1/R dw/d ¢ . ¢, strains are expressed by the displacements (Ua,Va,Wa)
) of the point Ao on normal.
As PA'N is aright angled triangle and NA' = Wa, then 6 Ua 1 & Va
tan (ZJPA'N)= NP/NA'. So ' P o — &) IR R (——+Wa) (4
NP = Wa tan ([ZIPA'N)= Wa (/R dw/d ¢). (2)-d ox R+z) 0 ¢
1 o Ua 6 Va
Since A'Ao' =z, and assume z does not change around YxXp= + 5)
circumference, R+Z) 8¢ ox
Inputting the equ(1),(2) into the equ (3) (4) (5) and puttin
PA"= PA0' sin ([ZPA0'A™) WaEW,thge straigs(vgcge)cxpandegq by(tl)xe( gigpl)acemgnts ogf
=(A'A0'-PA’) sin (ZA'A0'A") the point Ao on the inner surface of the arterial wall.
= (z - PA") sin (1/R dw/d ¢). .
As cos(ZIPA'N )= NA/PA'. Then e e oo -
o A= Walos(URaw/dg )- @-e R R R RR+Z) (R+Z)
"_ - 1 A
PA"=(z - Wa/cos(1/R dw/d ¢) sin(1/R dw/d ¢). U RV W ° 7 Z
. . R e Gk e IR )
Axial displacement Rz BERORORD
( Here we use the differential operaters as followings.
of GF 2%
Roee = f e = g0 e =g
ox . 9¢ 0 ¢?

On the other hand, the stress-strain relations in a given
compartment of the arterial segments were expressed as

ox=E (exte ¢)(1-0?) axial stress )
0¢=E (& ¢+ex)(1-02) circumferential stress (10)
Tx¢=E vx¢/2(1+¢)  shearing stress 11

Where E is the young' elastic modulus, ¢ is the Poisson ratio.
[II ] The expression of the forces and moments by using

C | recum fe ren ti al the displacement (U,V,W) of the point on the inner surface
. __of the arterial wall.
displacement

1] Nx ( the axial resultant force)

we set the standard point of the integration at point A on the
normal.Setting the thickness of the arterial wall h, then -h/2<
z < h/2. As a result, the stress resultant is revealed by
following integration

h/2
S ox(R+2Z)dzdg¢
-h/2
This is what the force operating longitudinally along the x axis,
h/2
Nx Rd ¢, Therefore § Nx*(Rd¢)= f ox(R+Z)dzd ¢,
Then
h/2
Nx= [ ox(R+ZyYRdzdg 12)
-h/2
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Relation between Ua and U
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Putting the equation 6,7 into equ9

E w2 u’ w” ov® oz w_
3 [ G p— SR —
(1-0H a2 R R? R R? (1+zR)
oW u' oz zw” z ov°® z
F ememmemmennnee S S
R (14+2zR) R R R? R R R
oz W z 0w z
— memm memessmemseseeees oooes A+ mmmemmemeeee e )dz
R? (1+4zR) R R 1+ zZR) R

Since R > > z, we expand it by power series of z/R as

o z z
CEY2:3 I N [ E— (13)
n=0 R R2
then
E W2 u ov 02z W o
= meenee B R Iz (-zZR)"
1-¢% 2 R R R2 1=0
OW z2?w” 0z’w’
Rah T(G#ZR) " - - Z(C¢zZR)™
R =0 R3 R3 n=0
OW Z o
it T (-zZR) d 2z
Rz n=0

the 3,6,9,10th terms, the higher order terms of zn (n>2)
are neglected.

E w2 u' oV oz’w  ow
= e (- + e + +
(1-02) a2 R R R3 R3
z?w”  oz*w  ow z? agv°®
- s s ememeeeoos - + ) dz
R3 R3 R3 R
Then we get the final form as
E u’ ov' ow w” h?
= eememeneenaen (= ARt + —eemees Yh-meem eeee- (14)
(1-¢» R R R R312
2 ] N¢ (the circumferential resultant)
The N ¢ is expressed by the integration of ¢ ¢ as
E h/2 z
N¢ =-mmmmeee J (e ¢+0 ex) (Lt - )dz
(1-02) 2 R¢

In the cylindrical shell, the R ¢ should be regarded infinite .
Then the resultant forces N ¢ is simply expressed as
N¢ = [ o ¢ dz. So

E W2 v zw w ou’
I emmnenane S (- - + + mmen ) dz
(l-0%)m2 R RXR+z) (R+2z) R

Neglecting the 5th term,and utilyzing equ(13)
E w2 v° o oou zw o«
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W oo
+ - X (-zZR))dz
R =0
neglecting the higher order terms over z3
E w2 v° o ou w z?
= memmnmnnee G e +(w W) - ) dz
(l1-¢2)mw2 R R R R3
E v ou w h3
= ememenean ((=me At e +oe )bt (W W) e 15)
(1-02) R R R 12 R3
3 ] Nx ¢ ( the shearing force)
The Nx¢ is calculatedby 7x¢ as
v2 E z
= [ ey X (1 4 ) dz
122 (1+0) R
E w2 u® (R+z)
- I( + A\
2(1+0)w2 (R+2z) R?
w' oz z
e (et e (14 2R ) da
R R (R+2z)
the 3,4,7th terms are calculated to 0. Utilyzing equ(11)
E w2 u® v zw °
Db S (=-=--(1-ZR) 4 - -----~(1 - Z/R +22/R?)
2(1+0) 2R R R?
L zu® z?2 z2w°’
. (1-zZR)+(v’ -w' ° ) - (1- zZR))dz
R? R3 R3
the higher order terms over z2 are neglected. Then
E w2 u® v’ z2
= emmmeeenne J (- +omt (V- W ) )dz
2(1+0) 2 R R R3
E u’ v’ h3
e ((-=---+----) h+ —meeme- (v’ -w °)Qae

4 ] Mx
direction)

(the bending moment for the axial

The moment Mx is given by the integration of the stress ¢ x as

n/2
Mx= - f gx(1+zR)zdz
/2
E w2 z?w" ow'  z2 ow z
= 5 + B —
(1-0? w2 R? R? (1+zR) R (1+z/R)
z?u’ 0z%?v° oz3w’ ow z2
S SR - ) dz
R? R? R}  (1+4z/R) R? (1+zR)
Utilyzing equ(13)
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E w2 z?w” oz?lw’ oWz . . 2
R L e (1-2R) -~ (1-ZR) Vo z
Q- 02)am2 R? R? R i ( + ) (z+--))dz
R R (R+2) R
z?2 oz3w’ owz? i . 5 yoh o
(U GV °) e mmmeeernee (1-2R) - oeeeeee Ga2Ryd _ o N e SeaRy 4o 2T
R? R3 R3 2 2
o, 2(1+0) w2 R n=0 R~ R~
oWz
- “"ii-a“(l-Z/R)dz 22w ° oo 22 1° oo v' z2
el Z (GzZR)Y 4 eeeee Z (zZRY A ememmeeee
the 3,8 th téms are canceled each other . R2 o R? a0 R?
E w2 z?w” oz?w’ 3, .
= J( + -(u+ov® @R2yd VW * 2
2 2 2 T mmmmem—— Z ( - )n ) dz
(l1—0%)aw2 R R 3
E h3 R n=0 R
T mmmmens o (w” +ow - (u" +0v°)) A7 the 1,3,7,9,11th terms and the higher order term of z are
(1-0?) 12R? neglected
5 ] M¢p(the bending moment for the E h/2 z?
circumferential direction) E—— Jo2 W'yt ) e dz
w2 2(14+0) -2 R?2
By integrating the stress ¢ ¢ as M¢ =- [ o ¢(1+z/R¢) zdz. E h3 1 ‘
-h/2 = (w® ' —-v’” ) (19
However in the cylindrical coordinates, R ¢p =co. Then (14+0) 12 R?
h/2 Similar calculation brings us to
M¢p = [ oxzdz h/2
-h/2 M@gx=-f 7 ¢x zdz=
- E w2 zv® z?w Wz -h/2
= mmmmmeemes S (- + E h3 u’ v’
(1—-02) w2 R R (R+z) (R+2z) = G A T p—— )(20)
czu oz’w’ 12(14+0) R? 2 2
+ - )dz . At last we have established the mathematical expression of
R R? ' the forces (equation 14,15,16) and moments (equation
17,18,19,20) utilyzing the displacements of the arbitrary
E w2 z2lw z 72 point just on the inner surface of the  arterial wall.
= e § (e (1o o+ o) N o
(1-02) w2 R2 R R2 V] Blologlc.al cgnSIdcratxon . .
Now we simplify these equations according to the
Wz 2 o z2w” biological data of the human femoral artery in vivo by
o (1 o)+ oememeemeee Y dz Le'aroyd & Taylor(%966). the range of the ratio of the wall
R R R2 thickness h and radius R was 0.0561 < h/2R <0.12.
Therefore 0.0048 > h2 /12*R2 > h3 /12*R2 . Consequently
g 5 - the terms that are mutiplied by h3/12*R2 are neglected.
E M2 Z°W Wz gz"wW So the Nx,N¢ ,Nx ¢ ,N¢x are all simplified and the
= mmmenmeee L + e T+ - ) dz moments are all neglected. Then the following equations
(1-0?%) 2 R? R? R? are establishied.
E h3 Eh du oW o dv
= (w+w +ow” )(18) NX = --oevemens G + e 4+ = e )
(1-02) 12 RZ 1—-02 48x R R 8¢
Eh ov W gdu
6] Mx¢ ( the twisting moment) N ¢ = ---memen ( wmmmien e )
By utilyzing the shearing stress R ¢ =00 , the shearing 1-02 Roo¢ R 0 X
moment Mx ¢ is Eh u’ v' h2(v' —w °)
b/2 NX @ =-mmmmmmmmennnnas (e Rl )
Mxg = - § zx¢(1+zR)zdz 2 (1+0) R R 12R3
h72 Eh u® v’ h? (u” +w")
N opx= { + e )
- E h/2 u’ (R+2z) v’ 2 (1+0) R R 12R3
= X + -
2(l1+0) 2 (R+z) R? As mentioned above hZ/12*R? -->0, then Nx ¢ =N ¢ x.
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