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Abstract

Background: Epidemiological studies suggest that radiation exposure may be a potential risk factor for schizophrenia in
adult humans. Here, we investigated whether adult irradiation in rats caused behavioral abnormalities relevant to
schizophrenia.

Methodology/Principal Findings: A total dose of 15-Gy irradiation in six fractionations during 3 weeks was exposed to the
forebrain including the subventricular zone (SVZ) and subgranular zone (SGZ) with male rats in the prone position.
Behavioral, immunohistochemical, and neurochemical studies were performed three months after fractionated ionizing
irradiation. Three months after fractionated ionizing irradiation, the total numbers of BrdU-positive cells in both the SVZ and
SGZ zones of irradiated rats were significantly lower than those of control (sham-irradiated) rats. Hyperactivity after
administration of the dopaminergic agonist methamphetamine, but not the N-methyl-D-aspartate (NMDA) receptor
antagonist dizocilpine, was significantly enhanced in the irradiated rats although spontaneous locomotion in the irradiated
rats was significantly lower than that of controls. Behavioral abnormalities including auditory sensory gating deficits, social
interaction deficits, and working memory deficits were observed in the irradiated rats.

Conclusion/Significance: The present study suggests that irradiation in adulthood caused behavioral abnormalities relevant
to schizophrenia, and that reduction of adult neurogenesis by irradiation may be associated with schizophrenia-like
behaviors in rats.
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Introduction

Schizophrenia is a heterogeneous and multifactorial disease

with complex interactions between genetic liability and environ-

mental factors. A number of epidemiological studies have

proposed perinatal events with potential harmful neurodevelop-

mental impacts as major environmental risk factors [1–4], but few

studies have revealed risk factors in adulthood. Interestingly, some

epidemiological studies suggest that exposure to ionizing radiation

may be a risk factor for schizophrenia in adult humans [5]. First, a

higher prevalence (6%) for schizophrenia was reported in the

atomic bomb survivors in Nagasaki, Japan [6]. Second, four years

after the Chernobyl accident in 1986, the incidence of schizo-

phrenia in the exclusion zone was significantly higher than that in

the general population (5.4 per 10,000 in the exclusion zone versus

1.1 per 10,000 in the Ukraine in 1990) [7]. Third, the incidence

for schizophrenia was shown to be high in people living in the

region of the Semipalatinsk nuclear weapon testing area in

Kazakhstan: 29% of all registered mental patients residing in the

area were suffering from schizophrenia and among those, 42.3%

were born before the first nuclear test explosions [5]. Furthermore,

the incidence for schizophrenia has also been shown to be high in

rural areas in India that have high natural background radiation

[5]. Taken together, the findings suggest that ionizing radiation

may be an environmental trigger that can actualize a predispo-

sition to schizophrenia or indeed cause schizophrenia-like

disorders [5].

In both pediatric and adult patients, cranial radiation therapy

causes debilitating cognitive deficits that are poorly understood

[8]. However, accumulating evidence suggests that radiation-

induced cognitive deficits in animals may be associated with a

decrease in hippocampal proliferation and a decrease in adult
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neurogenesis [9–15]. Interestingly, Reif et al. [16] reported a

reduction in the proliferation of hippocampal neural stem cells in

the postmortem brains of schizophrenic patients. Therefore, it is

likely that adult neurogenesis plays an important role in the

pathophysiology of psychiatric diseases including schizophrenia

[17]. Given the role of neurogenesis in radiation-induced cognitive

deficits, we hypothesized that reduction of adult neurogenesis by

irradiation may be implicated in the pathophysiology of

schizophrenia in adulthood. The present study was, therefore,

undertaken to examine whether irradiation in adult rats causes

behavioral abnormalities relevant to schizophrenia.

Methods

Animals
Adult male Sprague-Dawley rats (Japan SLC, Hamamatsu,

Japan), aged 8 weeks and weighing 280–300 g, were housed in

groups of three animals per cage under standard conditions

(2260.5uC, 12:12 light-dark cycle, lights on at 7:00 AM). All

procedures were approved by the Guide for Animal Experimen-

tation of the Hamamatsu University School of Medicine and

Chiba University Graduate School of Medicine. Irradiated group

and control group were 148 and 144 rats, respectively. All analyses

were performed three months after the last irradiation. Six rats

from both groups were used for neurotransmitter quantification,

and eight rats were used for cell counting. Nocturnal activity,

methamphetamine-treated response, and dizocilpine-treated re-

sponse were measured using 17, 17 and 18 pairs of rats,

respectively. Thirty-five irradiated rats and 33 control rats were

used for cognitive function tests of social interaction (6 rats each),

eight-arm radial maze (17 irradiated and 15 control rats), and

Morris water maze (12 rats each). Prepulse inhibition (PPI) test was

analysed in 23 irradiated and 21 control rats. Twelve rats for each

group were used for analysis of clozapine effect on PPI deficits.

Fractionated ionizing irradiation
The irradiation was done with a Stabilipan 2 (Siemens)

therapeutic unit (150 kV and 20 mA). A total dose of 15-Gy

irradiation in six fractionations during 3 weeks was exposed to the

forebrain including the subventricular zone (SVZ) and subgra-

nular zone (SGZ) with rats in the prone position. The other parts

of the head and whole body were protected by a lead shield.

Sham-irradiation controls underwent the same procedures as the

experimental animals, but did not receive irradiation.

Immunohistochemistry and stereological analysis
Twenty-four hours after intraperitoneal injection of BrdU

(100 mg/kg; Sigma-Aldrich Japan Inc., Tokyo, Japan), brains

were fixed with 4% paraformaldehyde. They were coronally

sectioned at 30 mm, and eight-section series were collected. Serial

sections were stained with mouse monoclonal anti-BrdU antibody

(0.6 mg/mL; Becton Dickinson Immunocytometry Systems, CA,

USA) and biotinylated horse-anti-mouse IgG (1:160; Vector Lab.

Inc., CA, USA). The signal was visualized using an ABC kit

(Vector Lab. Inc., CA, USA) and 3, 39-diaminobenzidine (Sigma-

Aldrich Japan Inc., Tokyo, Japan). Other series were stained with

Cresyl Violet for counting granule cells. The numbers of BrdU-

labeled nuclei in the SVZ and SGZ of the dentate gyrus, and

granule cells in the dentate gyrus were evaluated with Stereo

Investigator (version 6, MicroBrightField Japan, Inc., Chiba,

Japan). The SVZ estimates were made from two sections each

anterior and posterior to the decussation of the corpus callosum

(Bregma 1.60 mm). SGZ and granule cell layer estimates were

made from an 8-section series between the top and end of the

hippocampus. The volumes of each portion were estimated using

Cavalieri’s principle [18].

Measurement of dopamine, DOPAC and amino acids
Dopamine and its major metabolite DOPAC in rat brain

sample were measured by high-performance liquid chromatogra-

phy (HPLC) coupled with electrochemical detection (Eicom Co.,

Ltd., Kyoto, Japan) as reported previously [19]. Amino acids

(glutamine, glycine, glutamate, D-serine, L-serine) in rat brain

samples were measured by column-switching HPLC (Shimadzu

Co., Ltd., Kyoto, Japan) as reported previously [20].

Psychostimulant-induced hyperlocomotion
Spontaneous nocturnal locomotor activity was measured for six

hours in the middle of dark phase (21:00–3:00). Abnormalities in

dopaminergic neurotransmission were tested by hyperlocomotion

induced by the psychostimulant methamphetamine. Locomotor

activity was monitored under an infrared ray passive sensor system

(SCANET-SV20, Melquest Ltd., Toyama, Japan). After a 30-

minute acclimation period, rats were intraperitonealy (i.p.) injected

with methamphetamine (2.0 mg/kg, Dainippon Pharmaceuticals

Ltd, Osaka, Japan) or dizocilpine ((+)-MK-801; 0.03 mg/kg,

Sigma-Aldrich, St Louis, MO), and horizontal locomotor activities

were measured for 2 hours.

Social interaction
Social interaction was tested in a wooden arena (90690630 cm

high) placed in a dimly lit room. Each rat was tested for 10 min

with a weight-matched partner that had a similar treatment

condition but was from a different home cage. Social interaction

was assessed by the time spent interacting, including sniffing,

following, crawling over or under, grooming, and aggressive

behaviors.

Eight-arm radial maze
Spatial working memory was analyzed with an automated eight-

arm radial maze system in a manner similar to that described

previously [21]. Rats were placed on the central platform and

allowed to get all eight pellets within 10 min. The rats went

through 1 trial per day. When a rat could take seven pellets within

1 error for five consecutive days, the rat was administrated 10 daily

sessions for working memory assessment. A 30-sec delay was

initiated after four pellets had been taken by confining the rats in

the center with a shutter. After opening the shutter, the rat was

allowed to get the remaining 4 pellets. The number of revisits to

arms from which pellets had already been taken was used as the

working memory error. Data acquisition and control of shutter

were performed using Image RM 2.00 (O’Hara & Co., Ltd.

Tokyo, Japan), modified NIH Image program (available at http://

rsb.info.nih.gov/nih-image/).

Morris water maze
Spatial reference memory was assessed using the Morris water

maze (180 cm in diameter circular pool). A submerged translucent

platform was fixed in the center of a quadrant (north). Training

sessions consisted of placing the rat into the water maze at one of

three randomly chosen start positions (south, east, west) and

allowing it to swim to the platform for 60 sec. On the next day,

after rats were trained for 5 days with four trials per day, the

platform was moved to the opposite quadrant (south). A probe trial

was carried out after four trials identical to the training sessions.

The platform was removed and rats were allowed to swim freely

for 60 sec. The time spent in the quadrant where the platform has
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been previously located was used as an index of spatial reference

memory.

Prepulse Inhibition of acoustic startle response
The rats were tested for their acoustic startle responses (ASR) in

a startle chamber (SR-LAB, San Diego Instruments, CA, USA).

The sessions consisted of five trial types: 1) pulse alone, a 40-

millisecond broadband burst; 100 milliseconds preceding the

pulse, a 20-millisecond prepulse (PP) that was either 2) 4 dB

(PP74), 3) 8 dB (PP78), or 4) 16 dB (PP86) over the background

(70 dB), and 5) background only (no stimulus). The amount of

prepulse inhibition (PPI) is expressed as the percentage decrease in

the amplitude of the startle response caused by presentation of the

prepulse (%PPI).

To examine the effects of clozapine on PPI deficits in irradiated

rats, vehicle (0.8% acetic acids; 1 ml/kg for 3 weeks) or clozapine

(5 mg/kg/day for 3 weeks) were i.p. administered into control and

irradiated rats (control/vehicle = 6, control/clozapine = 6, irradi-

ated/vehicle = 6, irradiated/clozapine = 6). After the chronic (3

weeks) administration of vehicle or clozapine, PPI of acoustic

startle response was examined as described above.

Statistical analysis
Data are expressed as means6standard errors of the means

(SEM). The data from two experimental groups were compared by

unpaired t-test, except for PPI analysis, which was performed by a

two-way (irradiation and prepulse intensity) analysis of variance

(ANOVA). The level of significance was set at p,0.05.

Results

Three months after fractionated ionizing irradiation, the total

numbers of BrdU-positive cells in both the subventricular (SVZ:

Figure 1B) and subgranular (SGZ: Figure 1D) zones of

irradiated rats were significantly lower than those (SVZ:

Figure 1A, SGZ: Figure 1C) of control (sham-irradiated) rats

(SVZ: Figure 1E, SGZ: Figure 1F). These findings are

consistent with those of previous reports [9,10,12]. In contrast,

the cumulative numbers of granule cells in the granule layer were

not different between the two groups (Figure 1G).

As shown in Figure 2A, the nocturnal spontaneous locomotion

of irradiated rats was significantly (t = 2.34, df = 38.1, p = 0.025)

lower than that of control rats. Furthermore, locomotor activity

after administration of methamphetamine (2.0 mg/kg, i.p.) to

irradiated rats was significantly (t = 22.26, df = 32, p = 0.031)

higher than that of control (sham-irradiated) rats (Figure 2B).

HPLC analysis revealed that levels of dopamine and its major

metabolite DOPAC, and dopamine turnover (DOPAC/dopamine

ratio) in the frontal cortex and striatum of irradiated rats were not

different from those of sham-control rats (Figure 3). In contrast,

locomotor activity after administration of the NMDA receptor

antagonist dizocilpine ((+)-MK-801, 0.03 mg/kg, i.p.) to irradiated

rats was not different from that of sham-control rats (Figure 2C).

Furthermore, levels of amino acids (glutamate, glycine, glutamine,

D-serine, L-serine) related with the NMDA receptor neurotrans-

mission in the frontal cortex, hippocampus, and striatum, and

cerebellum of irradiated rats were not different from those of

sham-control rats (Figure 4).

Figure 1. Decreased neurogenesis in the irradiated adult rats. The BrdU-positive cells in both SVZ (B and E) and SGZ (D and F) of the
irradiated rats (n = 8) were significantly fewer than those (SVZ, A and E; SGZ, C and F) of control (sham-irradiated) rats (n = 8). Data are given as
means6SEM. ***p,0.001 as compared with controls. (G) The total numbers of granule cells in the dentate gyrus in irradiated rats (n = 6) and control
(sham-irradiated) rats (n = 6) were not different.
doi:10.1371/journal.pone.0002283.g001
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In the sensorimotor gating test, two-way ANOVA revealed a

significant effect [F (1, 42) = 47.1, p,0.001] of irradiation

exposure on prepulse inhibition (PPI) (Figure 5A), while acoustic

response amplitude in the two groups was not different

(Figure 5B). PPI deficits in irradiated rats were shown at each

level of prepulse intensity (72, 76, and 84 dB) (Figure 5A). In the

social interaction test, the time spent in social behavior in the

irradiated rats was significantly (t = 3.73, df = 10, p = 0.004) lower

than that that in the control rats (Figure 6). In the eight-arm

radial maze test, the number of working memory errors in the

irradiated rats was significantly (t = 23.63, df = 27.3, p = 0.001)

higher than that of control rats (Figure 7A). In contrast, the two

groups’ times in the probe test of a Morris water maze as an index

of spatial reference memory were not different (Figure 7B).

Figure 2. Spontaneous locomotion and response to methamphetamine and dizocilpine in irradiated adult rats. (A) Nocturnal
spontaneous locomotion (21:00–3:00) in the irradiated rats (n = 17) was significantly lower than that of control (sham-irradiated) rats (n = 17). (B)
Horizontal locomotor activity during the 120-min period after administration of the psychostimulant drug methamphetamine (2 mg/kg, i.p.) in
irradiated rats (n = 17) was significantly higher than that of control rats (n = 17). (C) Horizontal locomotor activity during the 120-min period after
administration of dizocilpine (0.03 mg/kg, i.p.) in the irradiated rats (n = 18) was not different from that of control rats (n = 18). Data are given as
means6SEM.
doi:10.1371/journal.pone.0002283.g002

Figure 3. Dopamine and its major metabolite DOPAC levels in the frontal cortex and striatum of rat brain. Levels of dopamine and its
major metabolite DOPAC, and dopamine turnover (DOPAC/dopamine ratio) in the frontal cortex and striatum were determined by HPLC analysis.
There are no differences between irradiated rats (n = 6) and sham-control rats (n = 6).
doi:10.1371/journal.pone.0002283.g003
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We examined whether the antipsychotic drug clozapine could

improve the reduction of neurogenesis and PPI deficits in

irradiated rats. Subsequent chronic administration of clozapine

(5 mg/kg/day for 3 weeks) did not alter the reduction of

neurogenesis in the irradiated (data not shown). Furthermore,

subsequent chronic administration of clozapine (5 mg/kg/day for

3 weeks) did not alter PPI in control rats (Figure 8A). However,

we found that chronic administration of clozapine (5 mg/kg/day

for 3 weeks) slightly improved PPI deficits in irradiated rats

although a statistical analysis was not significant (Figure 8B).

Discussion

The major findings of the present study are that fractionated

ionizing irradiation to the adult male rat brain causes schizophre-

nia-relevant abnormal behaviors (e.g., methamphetamine-induced

Figure 4. Levels of amino acids in the brain. Levels of amino acids (glutamate, glycine, glutamine, D-serine, L-serine) related with the NMDA
receptor neurotransmission in the frontal cortex, hippocampus, and striatum, and cerebellum were determined by HPLC analysis. There are no
differences between irradiated rats (n = 6) and sham-control rats (n = 6).
doi:10.1371/journal.pone.0002283.g004
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hyperactivity, sensory motor gating deficits, social interaction

deficits, and working memory deficits) at three months after the

irradiation. To the best of our knowledge, this is the first report

demonstrating an animal model of schizophrenia by irradiation at

adulthood. Although the irradiated adult rats may show essential

features (positive and negative symptoms as well as cognitive

deficits) relevant to schizophrenia, the pathophysiological mech-

anism underlying these behavioral changes remains unclear. A

recent study using postmortem brain samples demonstrated that

proliferation of hippocampal neural stem sells was significantly

reduced in patients with schizophrenia, but not unipolar

depression [16], suggesting that reduced neural stem cell

proliferation may contribute to the pathogenesis of schizophrenia.

Moreover, it has been reported that the reduction of cell

proliferation in the SGZ after repeated administration of the

NMDA receptor antagonist phencyclidine (PCP) may occur in

tandem with PCP-induced behavioral changes in rats [22]. In this

regard, it is likely that reduction of adult neurogenesis by

irradiation may be involved in the schizophrenia-like behavioral

abnormalities in rats. Recently, the association between neuro-

genesis dysfunction and schizophrenia has been also demonstrated

[23].

Monje et al. [11] observed that irradiation of the brains of adult

rats produced neural progenitor cell dysfunction within the

neurogenic zones of the hippocampus, regions plausibly implicated

in cognitive deficits. Furthermore, it has been suggested that

irradiation-induced cognitive deficits in animals may be associated

with a decrease in hippocampal proliferation and a decrease in

adult neurogenesis [9–15]. In the eight-arm radial maze test,

irradiated rats showed a deficit in working memory, which is also

shown in schizophrenic patients [24]. It has been suggested that

adult neurogenesis may serve an important role in hippocampal-

dependent memory processes [25,26]. First, exposure to an

enriched environment or increased physical activity leads to

increased hippocampal neurogenesis and improved spatial mem-

ory [26–28]. Second, the comprehensive loss of hippocampal-

dependent memory function in old age is related to decreased

neurogenesis [29]. Taken together, it seems that cognitive

impairment in irradiated rats may be due to reduction of

hippocampal neurogenesis.

In this study, we found that methamphetamine-induced

hyperactivity was significantly enhanced in the irradiated rats,

suggesting hyperdopaminergic activity. The precise mechanisms

underlying the hyperdopaminergic states in irradiated rats could

not be explained, as we found no alteration of dopamine or its

major metabolite DOPAC in the irradiated rat brains. Since

mesolimbic dopaminergic neurons innervate the SGZ of the

dentate gyrus [30], the dopaminergic activities of these neurons

may be involved in the regulation of hippocampal neurogenesis.

Furthermore, we previously reported that cell destruction of

Figure 5. Sensorimotor gating deficits in the irradiated adult
rats. (A) Auditory sensorimotor gating test: The irradiated rats (n = 23)
show significant PPI deficits as compared with control (sham-irradiated)
rats (n = 21). (B) Amplitude (in arbitrary units) of acoustic startle
responses to the 120 dB auditory stimuli without prepulse in both
groups was not different. Data are given as means6SEM. *p,0.05,
**p,0.01 as compared with control (sham-irradiated) rats.
doi:10.1371/journal.pone.0002283.g005

Figure 6. Social withdrawal in the irradiated adult rats. Social
interaction test: Total time (sec) spent in social behaviors for 10 min in
the irradiated rats (n = 6) was significantly lower than that of control rats
(n = 6). Data are given as means6SEM. **p,0.01 as compared with
control (sham-irradiated) rats.
doi:10.1371/journal.pone.0002283.g006
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dentate granules by intrahippocampal injection of colchicine

enhanced methamphetamine-induced hyperactivity in rats [31],

suggesting that dentate granule cells may regulate methamphet-

amine-induced behavioral changes. Taken together, the evidence

suggests that the decrease in hippocampal neurogenesis by

irradiation may, in part, be implicated in the hyperdopaminergic

activity of irradiated rats although the cumulative numbers of

granule cells in the granule layer were not altered in irradiated

rats.

Accumulating evidence suggests that hypofunction of the

NMDA receptors may play a role in the pathophysiology of

schizophrenia [32–34]. However, we did not find any alteration in

dizocilpine-induced hyperactivity and levels of amino acids related

to NMDA receptor neurotransmission in irradiated rat brains.

Therefore, it is unlikely that alteration in the NMDA receptors is

involved in the behavioral abnormalities in irradiated rats,

although further studies are necessary.

The idea that antipsychotic drugs may increase neurogenesis in

the rat hippocampus has not been consistently supported [17]. In

this study, we found that chronic administration of clozapine

(5 mg/kg/day for 3 weeks) did not alter the reduction of

neurogenesis in the irradiated and control rats. In addition, we

found that chronic administration of clozapine (5 mg/kg/day for 3

weeks) significantly did not improve PPI deficits in irradiated rats

although a slight improvement by clozapine was shown.

Therefore, it is likely that the inefficiency of clozapine treatment

on PPI deficits in irradiated rats may be dependent upon the

reduction of adult neurogenesis, although a further study will be

necessary.

The total numbers of BrdU-positive cells in both SVZ and SGZ

were significantly lower than those of sham-irradiated rats three

months after fractionated irradiation. The static BrdU-positive cell

count may reflect neurogenesis and/or survival of the recent born

cells. Monje et al. [10] have demonstrated that normal number of

neural progenitors was surviving two months after radiation

exposure although proliferative activity was reduced. They also

Figure 7. Cognitive impairments in the irradiated adult rats. (A)
Spatial working memory in the eight-arm radial maze with 30-sec delay.
Total number of revisits to arms from which pellets had already been
taken, (i.e., working memory error) is represented as mean6SEM.
Irradiated rats (n = 17) showed a higher number of working memory
errors than control (sham-irradiated) rats (n = 15). (B): In the probe trials
of the Morris water maze, spatial reference memory was intact in the
irradiated rats (n = 12). Data are given as means6SEM. **p,0.01 as
compared with control (sham-irradiated) rats (n = 12).
doi:10.1371/journal.pone.0002283.g007

Figure 8. Effects of chronic clozapine administration on PPI
deficits. (A) Control (sham-irradiated) rats: Chronic administration of
clozapine (5 mg/kg/day for 3 weeks, i.p.) did not alter PPI deficits in the
control rats (clozapine: n = 6; vehicle: n = 6). (B) Irradiated rats: Chronic
administration of clozapine (5 mg/kg/day for 3 weeks, i.p.) significantly
did not alter PPI deficits in the irradiated rats (clozapine: n = 6; vehicle:
n = 6). Data are given as means6SEM.
doi:10.1371/journal.pone.0002283.g008

Irradiation and Schizophrenia
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have shown that the neural stem/precursor cells isolated from

irradiated hippocampi failed to expand only 2–3 passages. These

findings suggest that the reduction of proliferating cells in the

present study might be due to ablated neurogenesis without

reduction of cell survival. Actually, it is reported that the decline of

proliferating cells lasted at 15 months after irradiation [35].

In the present study, we have regarded the neurogenesis

dysfunction as a possible mechanism underlying the radiation

induced abnormal behaviors associated with schizophrenia, based

on the findings suggesting the link between neurogenesis

dysfunction and schizophrenia. However, it has been reported

that irradiation also induces apoptosis [9], neuroinflammation

[11], and loss of oligodendrocyte precursor [35]. Further detailed

investigation is required to discriminate the involvement of these

factors on irradiation induced abnormal behavior relevant to

schizophrenia. Further studies on the optimization of radiation

dose, phenotypic alteration by the exposure age, and sex

differences are also needed.

In conclusion, the present findings suggest that irradiation in

adulthood might provide a new animal model of schizophrenia.

Further understanding the molecular and cellular mechanisms

underlying the behavioral abnormalities in irradiated rats would

contribute to the pathophysiology of schizophrenia.
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