{"created":"2023-06-20T15:46:00.646146+00:00","id":501,"links":{},"metadata":{"_buckets":{"deposit":"187bd962-53d5-4e0d-86e1-6a140ceafec9"},"_deposit":{"created_by":4,"id":"501","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"501"},"status":"published"},"_oai":{"id":"oai:hama-med.repo.nii.ac.jp:00000501","sets":["1:11"]},"author_link":["1345","1346","1347"],"item_3_alternative_title_1":{"attribute_name":"その他のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"Introduction of Method for Micro Dynamics of Non Spherical Bio Molecular Particles. : Method of Wu-Wang-Yi"}]},"item_3_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2000-11-23","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"478","bibliographicPageEnd":"16","bibliographicPageStart":"9","bibliographicVolumeNumber":"100","bibliographic_titles":[{"bibliographic_title":"電子情報通信学会技術研究報告. MBE, MEとバイオサイバネティックス IEICE technical report. ME and bio cybernetics"}]}]},"item_3_description_9":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"非球状粒子の粘性流体中の遅い運動を解析する方法をWang-yi(1984)らの提唱した方法にそって解説した。生体分子は通常非球状であり、楕円体とみなされる場合がある。そのような形状に対して特異点を連続的に、直線状に分布させて近似するやり方がSampson, R, A(Phil, Trans vol 182, p449-1081)らによってすでに提唱されており、Wang-yi(1984)らはそれを非球状粒子表面の摩擦力解析に応用している。本研報では、非球状生体分子にほん方法を応用すべく、その数学的過程および、彼等が発表した変形式を解説し、実践応用しやすいようにつとめた。粒子の速度、圧力はn次のLegendre関数およびGegenbauer関数による線形級数の形式で表現できた。数値計算で、解は収束することが確認されており、彼等の研究は非球状生体分子の挙動解析に有用である。 A mehtod was introduced for analyzing the creeping motions of non spherical particle in viscous fluid that has been proposed by Wu, Wang-yi(1984). To treat the arbitrary prolate axisymmetrical biological particle, linear approximation of the line continuous distribution method of singularities was firstly proposed by Sampson, R, A(Phil, Trans vol 182, p449-.1081) where the spherical singularities distribute continuously over the nose and the tail of the axial body. Refined approach utilized the Legendre and Gegenbauer polynomials of n-order. This report explained the proposed mathematical approach in detail with verifying their mathematical formula. The present method will be available for analyzing the micro dynamics of bio molecular particles.","subitem_description_type":"Abstract"}]},"item_3_publisher_6":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"電子情報通信学会"}]},"item_3_relation_22":{"attribute_name":"NII論文ID","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"110003287781","subitem_relation_type_select":"NAID"}}]},"item_3_rights_7":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"電子情報通信学会"},{"subitem_rights":"本文データは学協会の許諾に基づきCiNiiから複製したものである"}]},"item_3_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"09135685","subitem_source_identifier_type":"ISSN"}]},"item_3_version_type_32":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 博史"}],"nameIdentifiers":[{"nameIdentifier":"1345","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"沖田, 善光"}],"nameIdentifiers":[{"nameIdentifier":"1346","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"数井, 輝久"}],"nameIdentifiers":[{"nameIdentifier":"1347","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-08-27"}],"displaytype":"detail","filename":"110003287781.pdf","filesize":[{"value":"495.8 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"110003287781.pdf","url":"https://hama-med.repo.nii.ac.jp/record/501/files/110003287781.pdf"},"version_id":"3b201ee3-f99e-410e-8254-a9665da713e9"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"非球状粒子","subitem_subject_scheme":"Other"},{"subitem_subject":"特異点","subitem_subject_scheme":"Other"},{"subitem_subject":"摩擦力","subitem_subject_scheme":"Other"},{"subitem_subject":"Legendre関数","subitem_subject_scheme":"Other"},{"subitem_subject":"Gegenbauer関数","subitem_subject_scheme":"Other"},{"subitem_subject":"級数","subitem_subject_scheme":"Other"},{"subitem_subject":"速度、圧力","subitem_subject_scheme":"Other"},{"subitem_subject":"Non spherical particle","subitem_subject_scheme":"Other"},{"subitem_subject":"Creeping motion","subitem_subject_scheme":"Other"},{"subitem_subject":"Linear distribution of discrete singularities","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"形状を考慮した生体分子の挙動解析 : 楕円体分子周囲の力学場解析","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"形状を考慮した生体分子の挙動解析 : 楕円体分子周囲の力学場解析","subitem_title_language":"ja"}]},"item_type_id":"3","owner":"4","path":["11"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2013-08-27"},"publish_date":"2013-08-27","publish_status":"0","recid":"501","relation_version_is_last":true,"title":["形状を考慮した生体分子の挙動解析 : 楕円体分子周囲の力学場解析"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-02T05:42:15.496345+00:00"}