{"created":"2023-06-20T15:46:01.098597+00:00","id":508,"links":{},"metadata":{"_buckets":{"deposit":"5586c89c-9f76-428d-8ca4-d6346a383cf2"},"_deposit":{"created_by":4,"id":"508","owners":[4],"pid":{"revision_id":0,"type":"depid","value":"508"},"status":"published"},"_oai":{"id":"oai:hama-med.repo.nii.ac.jp:00000508","sets":["1:11"]},"author_link":["1366","1367","1368"],"item_3_alternative_title_1":{"attribute_name":"その他のタイトル","attribute_value_mlt":[{"subitem_alternative_title":"Mathematical Method for Stochastic Approach for Biochemical Reactions."}]},"item_3_biblio_info_5":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2000-09-22","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"330","bibliographicPageEnd":"8","bibliographicPageStart":"1","bibliographicVolumeNumber":"100","bibliographic_titles":[{"bibliographic_title":"電子情報通信学会技術研究報告. MBE, MEとバイオサイバネティックス IEICE technical report. ME and bio cybernetics"}]}]},"item_3_description_9":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"生化学反応を確率的に解析する方法を紹介した。反応系は基質1分子、生成物質1分子で構成される、最も単純な場合とした。基質は十分量存在し、生成物質は極端に大量ではなく逆方向解離は無視できるとした。確率変数によって酵素分子数、基質分子数、中間生成物質分子数、生成物質数を定義した。確率的にこれらの変数は整数値のみをとるとした。任意の時刻における酵素数と生成物質数を規定する状態確率に対するKolmogorov方程式を導出し、それに対して確率母関数を定義し、その方程式を偏微分方程式を解くことで求めた。求めた母関数を級数展開することで、反応系の期待値、定常偏差を決定することができた。本研究は単一反応における確率的挙動を推定するうえで有用である。 We introduced a method for analyzing the probabilistic behavior of a biochemical reaction. The target reaction was simplified to be composed of sufficient amount of substrate, enzyme, intermediate product and the final product. The random variables E(t), S(t), C(t) and P(t) represented the number of enzyme, substrate, intermediate complex and product molecules at time t. Let e, s, c and p denote integer values that these random variables can assume. The Kolmogorov forward equation was induced for the probabilistic behavior of the system. By defining the generator function of the system, we obtained the partial differential equation that the probability generating function satisfies. By expanding the generating function, we could obtain the mean (expected value) and the variance of the biochemical behaviors. The present method will be available for evaluating the stochastic behavior of the single component biochemical reaction.","subitem_description_type":"Abstract"}]},"item_3_publisher_6":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"電子情報通信学会"}]},"item_3_relation_22":{"attribute_name":"NII論文ID","attribute_value_mlt":[{"subitem_relation_type":"isIdenticalTo","subitem_relation_type_id":{"subitem_relation_type_id_text":"110003287748","subitem_relation_type_select":"NAID"}}]},"item_3_rights_7":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"電子情報通信学会"},{"subitem_rights":"本文データは学協会の許諾に基づきCiNiiから複製したものである"}]},"item_3_source_id_19":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"09135685","subitem_source_identifier_type":"ISSN"}]},"item_3_version_type_32":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"平山, 博史"}],"nameIdentifiers":[{"nameIdentifier":"1366","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"沖田, 善光"}],"nameIdentifiers":[{"nameIdentifier":"1367","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"数井, 輝久"}],"nameIdentifiers":[{"nameIdentifier":"1368","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-08-27"}],"displaytype":"detail","filename":"110003287748.pdf","filesize":[{"value":"462.9 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"110003287748.pdf","url":"https://hama-med.repo.nii.ac.jp/record/508/files/110003287748.pdf"},"version_id":"23d4ed02-c58c-43dd-b879-109afd83e062"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"生化学反応","subitem_subject_scheme":"Other"},{"subitem_subject":"確率微分方程式","subitem_subject_scheme":"Other"},{"subitem_subject":"Kolmogorov方程式","subitem_subject_scheme":"Other"},{"subitem_subject":"確率母関数","subitem_subject_scheme":"Other"},{"subitem_subject":"期待値、定常偏差","subitem_subject_scheme":"Other"},{"subitem_subject":"Biochemical reaction","subitem_subject_scheme":"Other"},{"subitem_subject":"Probabilistic differential equation","subitem_subject_scheme":"Other"},{"subitem_subject":"Generator function","subitem_subject_scheme":"Other"},{"subitem_subject":"Kolmogorov equation","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"生化学反応に対する確率的解析方法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"生化学反応に対する確率的解析方法","subitem_title_language":"ja"}]},"item_type_id":"3","owner":"4","path":["11"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2013-08-27"},"publish_date":"2013-08-27","publish_status":"0","recid":"508","relation_version_is_last":true,"title":["生化学反応に対する確率的解析方法"],"weko_creator_id":"4","weko_shared_id":-1},"updated":"2023-08-02T05:44:29.745035+00:00"}