ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学位論文
  2. 博士論文(医学)
  3. 本文

MIHARI project, a preceding study of MID-NET, adverse event detection database of Ministry Health of Japan -Validation study of the signal detection of adverse events of drugs using export data from EMR and medical claim data

http://hdl.handle.net/10271/00004263
http://hdl.handle.net/10271/00004263
76f0ef66-1de7-426f-9fc8-b3a953e40c74
名前 / ファイル ライセンス アクション
DT_ron588ronbun.pdf 論文本文 (1.3 MB)
license.icon
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2023-02-08
タイトル
タイトル MIHARI project, a preceding study of MID-NET, adverse event detection database of Ministry Health of Japan -Validation study of the signal detection of adverse events of drugs using export data from EMR and medical claim data
言語 en
言語
言語 eng
キーワード
主題 electronic medical records (EMR)
キーワード
主題 post-marketing safety surveillance of drugs
キーワード
主題 SS-MIX2 Standardized Storage
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
その他のタイトル
その他のタイトル 厚生労働省の有害事象検出データベースであるMID-NETの先行研究であるMIHARIプロジェクト -電子カルテからのデータと医療請求データを使用した薬物の有害事象の信号検出の検証研究
著者 渡邊, 浩

× 渡邊, 浩

ja 渡邊, 浩

Search repository
書誌情報 en : PLOS ONE

巻 16, 号 9, p. e0255863, 発行日 2021-09-08
出版者
出版者 PLOS (Public Library of Science)
言語 en
権利
言語 en
権利情報 Copyright: 2021 Watanabe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
抄録
内容記述タイプ Abstract
内容記述 We studied the effectiveness of the direct data collection from electronic medical records (EMR) when it is used for monitoring adverse drug events and also detection of already known adverse events. In this study, medical claim data and SS-MIX2 standardized storage data were used to identify four diseases (diabetes, dyslipidemia, hyperthyroidism, and acute renal failure) and the validity of the outcome definitions was evaluated by calculating positive predictive values (PPV). The maximum positive predictive value (PPV) for diabetes based on medical claim data was 40.7% and that based on prescription data from SS-MIX2 Standardized Storage was 44.7%. The PPV for dyslipidemia was 50% or higher under either of the conditions. The PPV for hyperthyroidism based on disease name data alone was 20?30%, but exceeded 60% when prescription data was included in the evaluation. Acute renal failure was evaluated using information from medical records in addition to the data. The PPV for acute renal failure based on the data of disease names and laboratory examination results was slightly higher at 53.7% and increased to 80?90% when patients who previously had a high serum creatinine (Cre) level were excluded. When defining a disease, it is important to include the condition specific to the disease; furthermore, it is very useful if laboratory examination results are also included. Therefore, the inclusion of laboratory examination results in the definitions, as in the present study, was considered very useful for the analysis of multi-center SS-MIX2 standardized storage data.
言語 en
学位名
学位名 博士(医学)
学位の区分
内容記述 doctoral
学位の分野
内容記述 医学系研究科
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 13802
学位授与機関名 浜松医科大学
学位授与年月日
学位授与年月日 2022-05-20
学位授与番号
学位授与番号 乙第588号
EISSN
収録物識別子タイプ EISSN
収録物識別子 1932-6203
PubMed番号
識別子タイプ PMID
関連識別子 34495957
出版社DOI
識別子タイプ DOI
関連識別子 https://doi.org/10.1371/journal.pone.0255863
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 16:16:32.888278
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3