ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 紀要論文
  2. 浜松医科大学紀要
  3. 28

パロンドのパラドックスを生成するパラメータ空間の凸領域

http://hdl.handle.net/10271/2754
http://hdl.handle.net/10271/2754
f1b4f006-b845-448d-86e3-86b4a1510de4
名前 / ファイル ライセンス アクション
kiyo28_01.pdf kiyo28_01.pdf (355.8 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2014-07-30
タイトル
タイトル パロンドのパラドックスを生成するパラメータ空間の凸領域
言語
言語 jpn
キーワード
主題Scheme Other
主題 Parrondo’s paradox
キーワード
主題Scheme Other
主題 generalized random walk
キーワード
主題Scheme Other
主題 mixed strategy
キーワード
主題Scheme Other
主題 convexity
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
その他のタイトル
その他のタイトル A Convex Domain in the Parameter Space that Generates Parrondo’s Paradox
著者 野田, 明男

× 野田, 明男

野田, 明男

Search repository
書誌情報 浜松医科大学紀要. 一般教育

巻 28, p. 1-9, 発行日 2014-03-28
出版者
出版者 浜松医科大学
抄録
内容記述タイプ Abstract
内容記述 The author proposed, in his classes for medical students at Hamamatsu, a study of Parrondo’s paradox described in these books [1], [2] and [3]. This paradox interested them and their naïve discussions in the classes stimulated him to investigate the class of all Parrondo’s games from a viewpoint of generalized random walks ([4]. The game consists of two basic games A and B of the same type. Suppose that a player repeats the game and observes the partial sum S X n k k n = = Σ1 at time n. Then, if Sn is a multiple of 3, she plays game A to get the next result Xn+1 that takes on one of the two values, +1(win) and –1(loss); otherwise she plays game B to get the result ′+ Xn 1 in like manner. We can therefore parametrize such a game by means of the expectations of games A and B, which we put E(Xn+1 ) = –α,E(Xn′+1 ) = β (–1 <α,β < 1). Our main result is Theorem 4 which asserts that Sn /n converges (in the weak sense) to the value δ1=3{2β –α(1+β2)}/(9+β2–2αβ) as n→∞. Hence we see that the game is favorable or unfavorable for a player according to δ1 > 0 or δ1 < 0. Since the domain given by α < 2β / (1+β2), 0 ≤ β <1, is convex, we now explain how one can generate Parrondo’s paradox. Indeed, noting that the mixed strategy of game I with α1, β 1 and game II with α2, β 2 becomes the game having the parameter α = (α +α ) / ,β = (β + β ) / 1 2 1 2 2 2, we generate various examples of α i, βi (i =1,2) in the final section, such that the inequality αi > 2βi / (1+β i2) holds for each i, whereas we have the inverse inequality α < 2β /(1+ β 2 ) satisfied by the mixed strategy. Applying the theory of generalized random walks developed in [4], we can also solve the ruin problem for every Parrondo’s game; we thus understand his paradox from another point of view.
ISSN
収録物識別子タイプ ISSN
収録物識別子 09140174
NII書誌ID
収録物識別子タイプ NCID
収録物識別子 AN10032827
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-20 17:05:37.074623
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3